[1]于颖 龙聪.动脉粥样硬化中自噬与凋亡相互作用的研究进展[J].心血管病学进展,2022,(5):454-458.[doi:10.16806/j. cnki. issn.1004-3934.2022.05.017]
 YU Ying,LONG Cong.Crosstalk Between Autophagy and Apoptosis in Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(5):454-458.[doi:10.16806/j. cnki. issn.1004-3934.2022.05.017]
点击复制

动脉粥样硬化中自噬与凋亡相互作用的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年5期
页码:
454-458
栏目:
出版日期:
2022-05-25

文章信息/Info

Title:
Crosstalk Between Autophagy and Apoptosis in Atherosclerosis
作者:
于颖 龙聪
(靖江市人民医院,江苏 靖江 214500)
Author(s):
YU Ying LONG Cong
?Jingjiang People’s Hospital, Jingjiang 214500, Jiangsu,China)
关键词:
凋亡自噬相互作用动脉粥样硬化
Keywords:
ApoptosisAutophagyCrosstalkAtherosclerosis
DOI:
10.16806/j. cnki. issn.1004-3934.2022.05.017
摘要:
动脉粥样硬化是心血管疾病的病理基础,以血管内脂质沉积和斑块形成为特点。凋亡和自噬作为细胞生存的调控者,在动脉粥样硬化中发挥重要作用。近期研究发现凋亡与自噬之间存在复杂的相互作用,通过二者的相互作用可反馈调节自噬或凋亡,进而调节动脉粥样硬化,可能为心血管疾病提供治疗方案。
Abstract:
Atherosclerosis is the pathological basis of cardiovascular diseases and is characterized by intravascular lipid deposition and plaque formation. As regulators of cell survival,apoptosis and autophagy play an important role in atherosclerosis. Recent studies have found a complex crosstalk between apoptosis and autophagy which can feedback regulate autophagy or apoptosis,and then regulate atherosclerosis,further may provide treatment options for cardiovascular diseases.

参考文献/References:

[1] Meier T,Gr?fe K,Senn F,et al. Cardiovascular mortality attributable to dietary risk factors in 51 countries in the WHO European Region from 1990 to 2016:a systematic analysis of the Global Burden of Disease Study[J]. Eur J Epidemiol,2019,34(1):37-55.

[2] Basatemur GL,J?rgensen HF,Clarke MCH,et al. Vascular smooth muscle cells in atherosclerosis[J]. Nat Rev Cardiol,2019,16(12):727-744.

[3] Kasprowska-Li?kiewicz D. The cell on the edge of life and death:crosstalk between autophagy and apotosis[J]. Postepy Hig Med Dosw(Online),2017,71(0):825-841.

[4] Nishimura T,Tooze SA. Emerging roles of ATG proteins and membrane lipids in autophagosome formation[J]. Cell Discov,2020,6(1):32.

[5] Dong Y,Chen H,Gao J,et al. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease[J]. J Mol Cell Cardiol,2019,136:27-41.

[6] Thorburn A. Crosstalk between autophagy and apoptosis:mechanisms and therapeutic implications[J]. Prog Mol Biol Transl Sci,2020,172:55-65.

[7] Gao G,Chen W,Yan M,et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling[J]. Int J Mol Med,2020,45(1):195-209.

[8] Dikic I,Elazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol,2018,19(6):349-364.

[9] Zhao JY,Li XY,Liu TD,et al. Silencing of ATG4D suppressed proliferation and enhanced cisplatin-induced apoptosis in hepatocellular carcinoma through Akt/Caspase-3 pathway[J]. Mol Cell Biochem,2021,476(11):4153-4159.

[10] Zhu X,Messer JS,Wang Y,et al. Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation[J]. J Clin Invest,2015,125(3):1098-1110.

[11] Wei H,Hu J,Pu J,et al. Long noncoding RNA HAGLROS promotes cell proliferation,inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells[J]. Int Immunopharmacol,2019,73:72-80.

[12] Wen J,Mai Z,Zhao M,et al. Full anti-apoptotic function of Bcl-XL complexed with Beclin-1 verified by live-cell FRET assays [J]. Biochem Biophys Res Commun,2019,511(3):700-704.

[13] Liu J,Liu W,Yang H. Balancing apoptosis and autophagy for parkinson’s disease therapy:targeting BCL-2[J]. ACS Chem Neurosci,2019,10(2):792-802.

[14] Li M,Gao P,Zhang J. Crosstalk between autophagy and apoptosis:potential and emerging therapeutic targets for cardiac diseases[J]. Int J Mol Sci,2016,17(3):332.

[15] Ojha R,Ishaq M,Singh SK. Caspase-mediated crosstalk between autophagy and apoptosis:mutual adjustment or matter of dominance[J]. J Cancer Res Ther,2015,11(3):514-524.

[16] Zhang X,Qi Z,Yin H,et al. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy[J]. Theranostics,2019,9(4):1096-1114.

[17] Wang S,Sun X,Jiang L,et al. 6-Gingerol induces autophagy to protect HUVECs survival from apoptosis[J]. Chem Biol Interact,2016,256:249-256.

[18] Li Z,Li Q,Lv W,et al. The interaction of Atg4B and Bcl-2 plays an important role in Cd-induced crosstalk between apoptosis and autophagy through disassociation of Bcl-2-Beclin1 in A549 cells[J]. Free Radic Biol Med,2019,130:576-591.

[19] Chen X,Pan Z,Fang Z,et al. Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1[J]. J Neuroinflammation,2018,15(1):310.

[20] Liu GY,Sabatini DM. mTOR at the nexus of nutrition,growth,ageing and disease[J]. Nat Rev Mol Cell Biol,2020,21(4):183-203.

[21] Zhang Y,Li F,Liu L,et al. Salinomycin-induced autophagy blocks apoptosis via the ATG3/AKT/mTOR signaling axis in PC-3 cells [J]. Life Sci,2018,207:451-460.

[22] Yu W,Zha W,Ren J. Exendin-4 and liraglutide attenuate glucose toxicity-induced cardiac injury through mTOR/ULK1-dependent autophagy[J]. Oxid Med Cell Longev,2018,2018:5396806.

[23] Zhu HH,Wang XT,Sun YH,et al. Pim1 overexpression prevents apoptosis in cardiomyocytes after exposure to hypoxia and oxidative stress via upregulating cell autophagy[J]. Cell Physiol Biochem,2018,49(6):2138-2150.

[24] Tasdemir E,Maiuri MC,Galluzzi L,et al. Regulation of autophagy by cytoplasmic p53[J]. Nat Cell Biol,2008,10(6):676-687.

[25] Robin M,Issa AR,Santos CC,et al. Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress[J]. Autophagy,2019,15(5):771-784.

[26] Yao Z,Zhang P,Guo H,et al. RIP1 modulates death receptor mediated apoptosis and autophagy in macrophages[J]. Mol Oncol,2015,9(4):806-817.

[27] Pott J,Burkhardt R,Beutner F,et al. Genome-wide meta-analysis identifies novel loci of plaque burden in carotid artery[J]. Atherosclerosis,2017,259:32-40.

[28] Dai S,Yang S,Hu X,et al. 17-hydroxy wortmannin restores TRAIL’s response by ameliorating increased Beclin 1 level and autophagy function in TRAIL-resistant colon cancer cells[J]. Mol Cancer Ther,2019,18(7):1265-1277.

[29] Chen Y,Zhou X,Qiao J,et al. Autophagy is a regulator of TRAIL-induced apoptosis in NSCLC A549 cells[J]. J Cell Commun Signal,2017,11(3):219-226.

[30] Simion V,Zhou H,Haemmig S,et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus[J]. Nat Commun,2020,11(1):6135.

[31] Tang V,Fu S,Rayner BS,et al. 8-Chloroadenosine induces apoptosis in human coronary artery endothelial cells through the activation of the unfolded protein response[J]. Redox Biol,2019,26:101274.

[32] Ma L,Zheng H,Zhang T. IL-10 suppress vascular smooth muscle cell apoptosis via JAK2/STAT3 signaling pathway and its mechanism of action in atherosclerosis[J]. Minerva Endocrinol,2019,44(4):402-405.

[33] Grootaert MOJ,Roth L,Schrijvers DM, et al. Defective autophagy in atherosclerosis:to die or to senesce?[J]. Oxid Med Cell Longev,2018,2018:7687083.

[34] Grootaert MOJ,Moulis M,Roth L,et al. Vascular smooth muscle cell death,autophagy and senescence in atherosclerosis[J]. Cardiovasc Res,2018,114(4):622-634.

[35] Wu W,Xu H,Wang Z,et al. PINK1-parkin-mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury[J]. PLoS One,2015,10(7):e0132499.

[36] Luo KQ,Long HB,Xu BC. Reduced apoptosis after acute myocardial infarction by simvastatin[J]. Cell Biochem Biophys,2015,71(2):735-740.

[37] Wang Y,Yang Z,Zheng G,et al. Metformin promotes autophagy in ischemia/reperfusion myocardium via cytoplasmic AMPKα1 and nuclear AMPKα2 pathways[J]. Life Sci,2019,225:64-71.

[38] Ma J,Qiao L,Meng L,et al. Tongxinluo may stabilize atherosclerotic plaque via multiple mechanisms scanning by genechip[J]. Biomed Pharmacother,2019,113:108767.

[39] Liu H,Wang C,Qiao Z,et al. Protective effect of curcumin against myocardium injury in ischemia reperfusion rats[J]. Pharm Biol,2017,55(1):1144-1148.

[40] Parisi L,Gini E,Baci D,et al. Macrophage polarization in chronic inflammatory diseases:killers or builders?[J]. J Immunol Res,2018,2018:8917804.

相似文献/References:

[1]吉家钗 陈娟 符策岗.利拉鲁肽通过促进自噬减轻去氧肾上腺素诱导的原代大鼠心肌肥厚[J].心血管病学进展,2019,(7):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
 JI jiachai,CHEN juan,FU cegang.Liraglutide protects against hypertrophy induced by phenylephrine in Neonatal Rat Cardiac Myocytes via promoting the autophagy flux[J].Advances in Cardiovascular Diseases,2019,(5):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(5):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]严宁,杨春霞,马娟,等.β-谷甾醇对大鼠心肌缺血再灌注损伤和ERK1/2信号通路的影响[J].心血管病学进展,2020,(3):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
 YAN Ning,YANG Chunxia,MA Juan,et al.Effects of -sitosterolon Myocardial Ischemia-reperfusion Injury and ERK1/2 Signaling Pathway in Rats[J].Advances in Cardiovascular Diseases,2020,(5):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
[4]甘婷 李景东.哺乳动物雷帕霉素靶蛋白介导的自噬在心血管疾病中作用的研究进展[J].心血管病学进展,2020,(4):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
 Gan Ting,LI Jingdong.Research progress of mTOR-mediated Autophagy in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(5):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
[5]阮怀玉 廖小婷 曾彬.miR-19b对H2O2诱导的大鼠心肌细胞H9c2氧化应激损伤的保护作用及机制研究[J].心血管病学进展,2021,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.020]
 RUAN Huaiyu,LIAO Xiaoting,ZENG Bin.Protective Effects and Mechanisms of miR-19b on the Oxidative Stress Injury induced by Hydrogen Peroxide in H9c2 Myocardial Cells[J].Advances in Cardiovascular Diseases,2021,(5):177.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.020]
[6]陈稳 叶强.自噬与心房颤动关系的研究进展[J].心血管病学进展,2022,(3):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 CHEN Wen,YE Qiang.The Relationship Between Autophagy and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(5):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[7]李开 饶莉.线粒体自噬的分子生物学过程及其在心脏疾病中的作用[J].心血管病学进展,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 LI Kai,RAO Li.Molecular Biological Process of Mitophagy and Its Role in Heart Diseases[J].Advances in Cardiovascular Diseases,2022,(5):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[8]叶莎 杨翠玲 郑媛媛.骨髓间充质干细胞来源外泌体通过PI3K/Akt途径减轻H2O2诱导心肌细胞损伤[J].心血管病学进展,2022,(3):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 YE Sha,YANG Cuiling,ZHENG Yuanyuan.Bone Marrow Mesenchymal Stem Cells Derived Exosomes Attenuate H 2O2 Induced Cardiomyocyte Injury Via PI3K/Akt Pathway[J].Advances in Cardiovascular Diseases,2022,(5):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[9]杨伟 苗立坤 陈章荣.自噬与心肌重构研究进展[J].心血管病学进展,2022,(6):535.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.014]
 YANG WeiIAO LikunCHEN Zhangrong.Autophagy and Myocardial Remodeling[J].Advances in Cardiovascular Diseases,2022,(5):535.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.014]
[10]林筝鸣 钱航 李东锋 许浩 陈继舜 闵新文 陈俊 杨汉东.胰高血糖素样肽-1受体敲除H9c2细胞株建立及其抗凋亡作用初探[J].心血管病学进展,2022,(9):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
 LIN Zhengming,QIAN Hang,LI Dongfeng,et al.Establishment of Glucagon-Like Peptide-1 Receptor Knockout H9c2 Cell Line and Its Anti-Apoptotic Effect[J].Advances in Cardiovascular Diseases,2022,(5):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
[11]韩亚凡 李耀东.内质网应激与心房颤动的研究进展[J].心血管病学进展,2023,(6):491.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.003]
 HAN Yafan,LI Yaodong.Critical Role of Endoplasmic Reticulum Stress in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(5):491.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.003]
[12]李蓝鸽 郑雅璇 吕婷婷 李锟 孔令云 周博达 刘芳 张萍 薛亚军.微RNA在冠状动脉微栓塞后心肌损伤的研究进展[J].心血管病学进展,2024,(8):747.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.016]
 LI Lange,ZHENG Yaxuan,LYU Tingting,et al.MicroRNA-mediated Regulation of Cardiomyocyte Injury Following Coronary Microembolisation[J].Advances in Cardiovascular Diseases,2024,(5):747.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.016]

更新日期/Last Update: 2022-06-30