参考文献/References:
[1] Yancy CW,Jessup M,Bozkurt B,et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the?Management of Heart Failure:A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America[J]. J Card Fail,2017,23(8):628-651.
[2] 和丽丽,左庆娟,张国瑞,等.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益的作用机制[J]..心血管病学进展,2020,41(9):954-957.
[3] Nielsen R,M?ller N,Gormsen LC,et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients[J]. Circulation,2019,139(18):2129-2141.
[4] Garcia-Ropero A,Santos-Gallego CG,Zafar MU,et al. Metabolism of the failing heart and the impact of SGLT2 inhibitors[J]. Expert Opin Drug Metab Toxicol,2019,15(4):275-285.
[5] Verma S,Rawat S,Ho KL,et al. Empagliflozin increases cardiac energy?production?in diabetes:novel translational insights into the heart failure benefits?of?SGLT2 inhibitors[J]. JACC Basic Transl Sci,2018,3(5):575-587.
[6] Ceriello A,Genovese S,Mannucci E,et al. Glucagon and heart in type 2 diabetes:new perspectives[J]. Cardiovasc Diabetol,2016,15(1):123.
[7] Santos-Gallego CG,Requena-Ibanez JA,San Antonio R,et al. Empagliflozin ameliorates adverse left?ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol,2019,73(15):1931-1944.
[8] Hallow KM,Helmlinger G,Greasley PJ,et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis[J]. Diabetes Obes Metab,2018,20(3):479-487.
[9] Verma S,Mcmurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit:a state-of-the-art review[J]. Diabetologia,2018,61(10):2108-2117.
[10] Zinman B,Wanner C,Lachin JM,et al. Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J]. N Engl J Med,2015,373(22):2117-2128.
[11] Heerspink HJ,Perkins BA,Fitchett DH,et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus:cardiovascular and kidney effects,potential mechanisms,and clinical applications[J]. Circulation,2016,134(10):752-772.
[12] Filippatos TD,Tsimihodimos V,Liamis G,et al. SGLT2 inhibitors-induced electrolyte abnormalities:An analysis of the associated mechanisms[J]. Diabetes Metab Syndr,2018,12(1):59-63.
[13] Hui Y,Junzhu C,Jianhua Z. Gap junction and Na+-H+ exchanger alternations in fibrillating and failing atrium[J]. Int J Cardiol,2008,128(1):147-149.
[14] Zelniker TA,Braunwald E. Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes:JACC state-of-the-art review[J]. J Am Coll Cardiol,2018,72(15):1845-1855.
[15] Lambert R,Srodulski S,Peng X,et al. Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na+-glucose cotransport[J]. J Am Heart Assoc,2015,4(9):e002183.
[16] Lytvyn Y,Bjornstad P,Udell JA,et al. Sodium glucose cotransporter-2 inhibition in heart failure:potential mechanisms,clinical applications,and summary of clinical trials[J]. Circulation,2017,136(17):1643-1658.
[17] Baartscheer A,Schumacher CA,Wüst RC,et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits[J]. Diabetologia,2017,60(3):568-573.
[18] Uthman L,Baartscheer A,Bleijlevens B,et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts:inhibition of Na(+)/H(+) exchanger,lowering of cytosolic Na(+) and vasodilation[J]. Diabetologia,2018,61(3):722-726.
[19] Baartscheer A,Hardziyenka M,Schumacher CA,et al. Chronic inhibition of the Na+/H+- exchanger causes regression of hypertrophy,heart failure,and ionic and electrophysiological remodelling[J]. Br J Pharmacol,2008,154(6):1266-1275.
[20] Karmazyn M. NHE-1:still a viable therapeutic target[J]. J Mol Cell Cardiol,2013,61:77-82.
[21] Edgley AJ,Krum H,Kelly DJ. Targeting fibrosis for the treatment of heart failure:a role for transforming growth factor-β[J]. Cardiovasc Ther,2012,30(1):e30-e40.
[22] Travers JG,Kamal FA,Robbins J,et al. Cardiac fibrosis:the fibroblast awakens[J]. Circ Res,2016,118(6):1021-1040.
[23] Kang S,Verma S,Hassanabad AF,et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts:novel translational clues to explain EMPA-REG OUTCOME results[J]. Can J Cardiol,2020,36(4):543-553.
[24] Lin B,Koibuchi N,Hasegawa Y,et al. Glycemic control with empagliflozin,a novel selective SGLT2 inhibitor,ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice[J]. Cardiovasc Diabetol,2014,13:148.
[25] Ronco C,Bellasi A,di Lullo L. Cardiorenal syndrome:an overview[J]. Adv Chronic Kidney Dis,2018,25(5):382-390.
[26] Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot[J]. Nat Rev Endocrinol,2015,11(6):363-371.
[27] Wu Y,Zhang A,Hamilton DJ,et al. Epicardial fat in the maintenance of cardiovascular health[J]. Methodist Debakey Cardiovasc J,2017,13(1):20-24.
[28] Bouchi R,Terashima M,Sasahara Y,et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes:a pilot study[J]. Cardiovasc Diabetol,2017,16(1):32.
[29] Yagi S,Hirata Y,Ise T,et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus[J]. Diabetol Metab Syndr,2017,9:78.
[30] Sato T,Aizawa Y,Yuasa S,et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume[J]. Cardiovasc Diabetol,2018,17(1):6.
[31] Petrie MC,Verma S,Docherty KF,et al. Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes[J]. JAMA,2020,323(14):1353-1368.
[32] Nassif ME,Windsor SL,Tang F,et al. Dapagliflozin effects on biomarkers,symptoms,and functional status in patients with heart failure with reduced ejection fraction:the DEFINE-HF trial[J]. Circulation,2019,140(18):1463-1476.
[33] Packer M,Anker SD,Butler J,et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med,2020,383(15):1413-1424.
[34] Li X,Zhang Q,Zhu L,et al. Effects of SGLT2 inhibitors on cardiovascular,renal,and major safety outcomes in heart failure:A meta-analysis of randomized controlled trials[J]. Int J Cardiol,2021,332:119-126.
[35] Vardeny O,Vaduganathan M. practical guide to prescribing sodium-glucose cotransporter 2 inhibitors for cardiologists[J]. JACC Heart Fail,2019,7(2):169-172.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(12):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(12):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(12):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(12):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(12):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(12):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(12):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(12):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]张阳扬 尹德录.新型降糖药物在心力衰竭中的应用前[J].心血管病学进展,2020,(6):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
ZHANG Yangyang,YIN Delu.Prospect of New Glucose-lowering Drugs in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(12):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
[12]和丽丽 左庆娟 张国瑞 郭艺芳.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益的作用机制[J].心血管病学进展,2020,(9):954.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.017]
HE Lili,ZUO Qingjuan,ZHANG Guorui,et al.Mechanism of Benefit of Sodium-glucose Co-transporter 2 Inhibitors in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(12):954.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.017]
[13]张敏 龙开超 唐毅 刘君宇 彭建强.钠-葡萄糖协同转运蛋白2抑制剂使心力衰竭获益机制研究进展[J].心血管病学进展,2021,(12):1096.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.010]
ZHANG Min,LONG Kaichao,TANG Yi,et al.Mechanism of the Benefit of Sodium-Glucose?o-Transporter 2 Inhibitors in Heart Failure[J].Advances in Cardiovascular Diseases,2021,(12):1096.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.010]