[1]龙殿飞 李娜 薛世珊 苏国海 禹文茜.组蛋白去乙酰化抑制剂在心血管疾病中的治疗潜力[J].心血管病学进展,2021,(10):933.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.017]
 LONG DianfeiLI NaXUE Shishan SU GuohaiYU Wenqian.Therapeutic Potential of Histone Deceatylase Inhibitors in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(10):933.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.017]
点击复制

组蛋白去乙酰化抑制剂在心血管疾病中的治疗潜力()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年10期
页码:
933
栏目:
综述
出版日期:
2021-10-25

文章信息/Info

Title:
Therapeutic Potential of Histone Deceatylase Inhibitors in Cardiovascular Disease
作者:
龙殿飞1 李娜23 薛世珊3 苏国海23 禹文茜23
(1.潍坊医学院,山东 潍坊 261053;2山东第一医科大学附属中心医院,山东济南 250013;3.山东大学附属济南市中心医院,山东 济南 250013)
Author(s):
LONG Dianfei1LI Na23XUE Shishan 3SU Guohai23YU Wenqian23
Weifang Medical College,Weifang 261053,Shandong,China; 2.Jinan Central Hospital Affiliated to Shandong University,Jinan 250013,Shandong,China;3.Jinan Central Hospital Affiliated to Shandong First Medical University,Jinan 250013,Shandong,China)
关键词:
组蛋白去乙酰化酶组蛋白去乙酰化酶抑制剂心血管疾病
Keywords:
Histone deacetylasesHis disease tone deacetylase inhibitorsCardiovascular diseases
DOI:
10.16806/j.cnki.issn.1004-3934.2021.10.017
摘要:
赖氨酸乙酰化是一种保守、可逆的翻译后蛋白修饰,受赖氨酸乙酰转移酶和组蛋白去乙酰化酶调控,参与多种细胞信号转导途径和疾病的发生。在动物模型中的研究揭示了可逆赖氨酸乙酰化在高血压、血管疾病、心肌梗死与缺血再灌注损伤、心肌肥厚、心力衰竭和心律失常中的调节作用。这些研究的证据表明,组蛋白去乙酰化酶抑制剂在心血管疾病中具有治疗作用。现主要描述了组蛋白去乙酰化酶在心血管疾病中的不同作用,这些观察结果对组蛋白去乙酰化酶抑制剂作为心血管疾病治疗药物的临床应用具有重要意义。
Abstract:
Lysine acetylation is a conserved,reversible,post-translational protein modification regulated by lysine acetyltransferases and histone deacetylases (HDACs) that is involved in many cellular signalling pathways and diseases. Studies in animal models have revealed a regulatory role of reversible lysine acetylation in hypertension,vascular diseases,myocardial infarction and ischemia reperfusion injury,myocardial hypertrophy,heart failure and arrhythmia. Evidence from these studies indicates a therapeutic role of HDAC inhibitors in cardiovascular diseases. In this Review,we describe the diverse roles of HDACs in cardiovascular disease. These observations have important implications for the clinical utility of HDAC inhibitors as therapeutic agents for cardiovascular diseases.

参考文献/References:

[1] Li P,Ge J,Li H. Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease[J]. Nat Rev Cardiol,2020,17(2):96-115.
[2] Man K,Brunet M,Fernandez-Rhodes M,et al. Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation[J]. J Extracell Vesicles,2021,10(9): e12118.
[3] Bai L,Kee H,Choi S,et al. HDAC5 inhibition reduces angiotensin Ⅱ-induced vascular contraction,hypertrophy,and oxidative stress in a mouse model[J].Biomed Pharmacother,2021,134:111162.
[4] Chi Z,Byeon H,Seo E,et al. Histone deacetylase 6 inhibitor tubastatin A attenuates angiotensin II-induced hypertension by preventing cystathionine γ-lyase protein degradation[J]. Pharmacol Res,2019,146:104281.
[5] Choi J,Park S,Kwon T,et al. Role of the histone deacetylase inhibitor valproic acid in high-fat diet-induced hypertension via inhibition of HDAC1/angiotensin Ⅱ axis[J].Int J Obes (Lond),2017,41(11):1702-1709.
[6] Guo J,Wang Z,Wu J,et al. Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling[J].Circ Res,2019,124(10):1448-1461.
[7] Asare Y,Campbell-James T,Bokov Y,et al. Histone deacetylase 9 activates IKK to regulate atherosclerotic plaque vulnerability[J].Circ Res,2020,127(6):811-823.
[8] Toulassi I,Al Saedi U,Gutlapalli S,et al. A paradigm shift in the management of atherosclerosis:protective role of sirtuins in atherosclerosis[J]. Cureus,2021,13(1):e12735.
[9] Gao Q,Wei A,Chen F,et al. Enhancing PPARγ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice[J]. Pharmacol Res,2020,160:105059.
[10] Manea S,Vlad M,Fenyo I,et al. Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression,oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis[J]. Redox Biol,2020,28:101338.
[11] Chen J,Luo Y,Wang S,et al. Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury[J].J Mol Cell Cardiol,2019,134:154-164.
[12] Lin CF, Hsu KC, HuangFu WC,et al. Investigating the potential effects of selective histone deacetylase 6 inhibitor ACY1215 on infarct size in rats with cardiac ischemia-reperfusion injury[J]. BMC Pharmacol Toxicol,2020,21(1):21.
[13] Tian S,Lei I,Gao W,et al. HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction[J]. EBioMedicine,2019,39:83-94.
[14] Shang L,Pin L,Zhu S,et al. Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/ GSK-3β signaling pathway[J]. Chem Biol Interact,2019,307:21-28.
[15] Zhang L,Deng M,Lu A,et al. Sodium butyrate attenuates angiotensin Ⅱ-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism[J]. J Cell Mol Med,2019,23(12):8139-8150.
[16] Zhao T,Kee H,Bai L,et al. Selective HDAC8 inhibition attenuates isoproterenol-induced cardiac hypertrophy and fibrosis via p38 MAPK pathway[J]. Front Pharmacol,2021,12:677757.
[17] Liao PP, Liu LH, Wang B,et al. Correlation between histone deacetylase 9 and regulatory T cell in patients with chronic heart failure[J]. Curr Med Sci,2018,38(2):199-203.
[18] Nagata S,Marunouchi T,Tanonaka KJB,et al. Histone deacetylase inhibitor SAHA treatment prevents the development of heart failure after myocardial infarction via an induction of heat-shock proteins in rats[J]. Biol Pharm Bull,2019,42(3):453-461.
[19] Nural-Guvener H, Zakharova L, Feehery L,et al. Anti-fibrotic effects of class I HDAC inhibitor,mocetinostat is associated with IL-6/stat3 signaling in ischemic heart failure[J].Int J Mol Sci,2015,16(5):11482-11499.
[20] Travers J,Wennersten S,Pe?a B,et al. HDAC inhibition reverses preexisting diastolic dysfunction and blocks covert extracellular matrix remodeling[J].Circulation,2021,143(19):1874-1890.
[21] Zhang D,Hu X,Li J,et al. Converse role of class Ⅰ and class Ⅱa HDACs in the progression of atrial fibrillation[J]. J Mol Cell Cardiol,2018,125:39-49.
[22] Rahm AK,Wieder T,Gramlich D,et al. HDAC2-dependent remodeling of K2.2 (KCNN2) and K2.3 (KCNN3) K channels in atrial fibrillation with concomitant heart failure[J].Life Sci, 2021,266:118892.
[23] van Marion D,Lanters E,Wiersma M,et al. Diagnosis and therapy of atrial fibrillation:the past,the present and the future[J]. J Atr Fibrillation,2015,8(2):1216.
[24] Zhang D,Wu C,Qi X,et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation[J]. Circulation,2014,129(3):346-358.

备注/Memo

备注/Memo:
收稿日期:2021-06-06基金项目:国家科技重大专项(2020ZX09201025);山东省自然科学基金(ZR2018MH003);济南市临床科技创新计划(201805004);国家自然科学基金青年项目(82002987)
更新日期/Last Update: 2021-12-02