[1]吴芬 马占龙.Tenascin X在心血管疾病中的研究进[J].心血管病学进展,2021,(10):924.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.015]
 WU Fen,MA Zhanlong.Research Progress Of Tenascin-X In Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(10):924.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.015]
点击复制

Tenascin X在心血管疾病中的研究进()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年10期
页码:
924
栏目:
综述
出版日期:
2021-10-25

文章信息/Info

Title:
Research Progress Of Tenascin-X In Cardiovascular Diseases
作者:
吴芬 马占龙
(南京医科大学第一附属医院放射科,江苏 南京 210029)
Author(s):
WU FenMA Zhanlong
(Department of Radiology,First Affiliated Hospital of Nanjing Medical University,Nanjing 210029,Jiangsu,China)
关键词:
腱蛋白X组织重塑TGF-β/Smad信号通路细胞外基质心血管疾病
Keywords:
Tenascin XTissue remodelingTGF-/Smad signaling pathwayExtracellular matrixCardiovascular diseases
DOI:
10.16806/j.cnki.issn.1004-3934.2021.10.015
摘要:
组织重塑是许多心血管疾病的共同病理过程,目前尚无有效的手段逆转甚至延缓组织重塑,对患者而言是个潜在慢性的生命威胁因素。在心血管疾病中,肌腱蛋白X扮演着重要角色,参与多种疾病的发生发展过程,如主动脉瓣钙化、主动脉瘤、纤维化及动脉粥样硬化等。肌腱蛋白X作为肌腱蛋白家族中一员,是目前发现的唯一发挥重要结构功能的亚型。肌腱蛋白X可直接或间接连接细胞外基质,为结缔组织提供生物力学支撑,也可调节细胞通讯参与细胞的附和增殖。肌腱蛋白X可能通过影响TGF-β/Smad信号通路调节细胞外基质分子的表达,参与组织重塑与纤维化,从而干扰疾病的进展与预后。因此肌腱蛋白X有可能作为潜在的心血管疾病诊断和风险分级的有效生物标志物。
Abstract:
Tissue remodeling is a common pathological process of many cardiovascular diseases. There is no effective treatment to reverse or delay tissue remodeling,which is a potential chronic life threat factor for patients.Tenascin-X plays an vital part in the occurrence and development of many cardiovascular diseases,such as aortic valve calcification,aortic aneurysm,fibrosis and atherosclerosis.Tenascin-X,as a member of the multifunctional glycoprotein family-Tenascins,is the only subtype found to play an important role in structure. Tenascin-X can directly or indirectly connect with extracellular matrix which provide biomechanical support for connective tissue,and regulate cell communication to involve in cell adhesion and proliferation. On the mechanism,Tenascin-X may makes an effect on TGF-β/Smad signaling pathway to adjust the expression of extracellular matrix and participate in tissue remodeling and fibrosis,further interfering with the progress and prognosis of cardiovascular diseases. Therefore,TNX can be an effective biomarker for the diagnosis and risk classification of cardiovascular diseases

参考文献/References:

[1] Brown IAM,Diederich L,Good ME,et al. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension[J]. Arterioscler Thromb Vasc Biol,2018,38(9):1969-1985.

[2] Mozaffarian D,Benjamin EJ,Go AS,et al. Heart disease and stroke statistics—2015 update:a report from the American Heart Association[J]. Circulation,2015,131(4):e29-e322.
[3] Imanaka-Yoshida K,Matsumoto K. Multiple roles of tenascins in homeostasis and pathophysiology of aorta[J]. Ann Vasc Dis,2018,11(2):169-180.
[4] Valcourt U,Alcaraz LB,Exposito JY,et al. Tenascin-X:beyond the architectural function[J]. Cell Adh Migr,2015,9(1-2):154-165.
[5] Adams JC,Chiquet-Ehrismann R,Tucker RP. The evolution of tenascins and fibronectin[J]. Cell Adh Migr,2015,9(1-2):22-33.
[6] Miller WL. Tenascin-X—discovery and early research[J]. Front Immunol,2021,11:612497.
[7] Tsuda T. Extracellular interactions between fibulins and transforming growth factor (TGF)-β in physiological and pathological conditions[J]. Int J Mol Sci,2018,19(9):2787.
[8] Tucker RP,Degen M. The expression and possible functions of tenascin-W during development and disease[J]. Front Cell Dev Biol,2019,7:53.
[9] Wiemann S,Reinhard J,Faissner A. Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation[J]. Biochem Soc Trans,2019,47(6):1651-1660.
[10] Br?icke N,Faissner A. Role of tenascins in the ECM of gliomas[J]. Cell Adh Migr,2015,9(1-2):131-140.
[11] Jaminon A,Reesink K,Kroon A,et al. The role of vascular smooth muscle cells in arterial remodeling:focus on calcification-related processes[J]. Int J Mol Sci,2019,20(22):5694.
[12] Chiquet M,Birk DE,B?nemann CG,et al. Collagen Ⅻ:protecting bone and muscle integrity by organizing collagen fibrils[J]. Int J Biochem Cell Biol,2014,53:51-54.
[13] Kasprzycka M. Tenascins in fibrotic disorders—from bench to bedside[J]. Cell Adh Migr,2015,1-2(9):83-89.
[14] Donato M,Ferri N,Lupo MG. Current evidence and future perspectives on pharmacological treatment of calcific aortic valve stenosis[J]. Int J Mol Sci,2020,21(21):8263-8291.
[15] di Vito A,Donato A,Presta I,et al. Extracellular matrix in calcific aortic valve disease:architecture,dynamic and perspectives[J]. Int J Mol Sci,2021,22(2):913.
[16] Matsumoto K,Satoh K,Maniwa T,et al. Noticeable decreased expression of tenascin-X in calcific aortic valves[J]. Connect Tissue Res,2012,53(6):460-468.
[17] Sprynger M,Willems M,van Damme H,et al. Screening program of abdominal aortic aneurysm[J]. Angiology,2019,70(5):407-413.
[18] 张培德,王巍. 转化生长因子-β信号通路在主动脉瘤性疾病进程中作用机制的研究进展[J]. 中国循环杂志,2017,32(10):1038-1040.
[19] Tanios F,Gee MW,Pelisek J,et al. Interaction of biomechanics with extracellular matrix components in abdominal aortic aneurysm wall[J]. Eur J Vasc Endovasc Surg,2015,50(2):167-174.
[20] Quintana RA,Taylor WR. Cellular mechanisms of aortic aneurysm formation[J]. Circ Res,2019,124(4):607-618.
[21] Satoh K,Tsukamoto M,Shindoh M,et al. Increased expression of tenascin-X in thoracic and abdominal aortic aneurysm tissues[J]. Biol Pharm Bull,2010,33(11):1898-1902.
[22] Lareyre F,Clément M,Raffort J,et al. TGFβ (transforming growth factor-β) blockade induces a human-like disease in a nondissecting mouse model of abdominal aortic aneurysm[J]. 2017,37(11):2171-2181.
[23] Zhang Y,Chen B,Xie X,et al. Role of Tenascin-X in regulating TGF-β/Smad signaling pathway in pathogenesis of slow transit constipation[J]. World J Gastroenterol,2020,26(7):717-724.
[24] Tian B,Ding X,Song Y,et al. Matrix stiffness regulates SMC functions via TGF-β signaling pathway[J]. Biomaterials,2019,221:119407.
[25] Shi N,Mei X,Chen S. Smooth muscle cells in vascular remodeling[J]. Arterioscler Thromb Vasc Biol,2019,39(12):e247-e252.
[26] González A,Schelbert EB,Díez J,et al. Myocardial interstitial fibrosis in heart?ailure[J]. J Am Coll Cardiol,2018,71(15):1696-1706.
[27] Weber KT,Sun Y,Bhattacharya SK,et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart[J]. Nat Rev Cardiol,2013,10(1):15-26.
[28] Gy?gy?i M,Winkler J,Ramos I,et al. Myocardial fibrosis:biomedical research from bench to bedside[J]. Eur J Heart Fail,2017,19(2):177-191.
[29] Lodyga M,Hinz B. TGF-β1–a truly transforming growth factor in fibrosis and immunity[J]. SeminaCell Dev Biol,2020,101:123-139.
[30] Hu HH,Chen DQ,Wang YN,et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact,2018,292:76-83.
[31] Scalise RFM,de Sarro R,Caracciolo A,et al. Fibrosis after myocardial infarction:an overview on cellular processes,molecular pathways,clinical evaluation and prognostic value[J]. Med Sci,2021,9(1):16.
[32] Yamaguchi S,Kawakami K,Satoh K,et al. Suppression of hepatic dysfunction in tenascin-X-deficient mice fed a high-fat diet[J]. Mol Med Rep,2017,16(4):4061-4067.
[33] Grootaert MOJ,Moulis M,Roth L,et al. Vascular smooth muscle cell death,autophagy and senescence in atherosclerosis[J]. Cardiovasc Res,2018,114(4):622-634.
[34] Gy?fi AH,Matei A,Distler JHW. Targeting TGF-β signaling for the treatment of fibrosis[J]. Matrix Biol,2018,68-69:8-27.
[35] Allahverdian S,Chaabane C,Boukais K,et al. Smooth muscle cell fate and plasticity in atherosclerosis[J]. Cardiovasc Res,2018,114(4):540-550.
[36] Matsumoto KI,Aoki H. The roles of tenascins in cardiovascular,inflammatory,and heritable connective tissue diseases[J]. Front Immunol,2020,11:609752.
[37] 李燕,宋佳成,严海浪,等. 腱糖蛋白-C在载脂蛋白E基因敲除小鼠动脉粥样硬化斑块不同时期表达的变化[J]. 中国循环杂志,2017,32(12):1217-1221.
[38] Alcaraz LB,Exposito J,Chuvin N,et al. Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-β[J]. J Cell Biol,2014,205(3):409-428.

备注/Memo

备注/Memo:
收稿日期:2021-06-06
更新日期/Last Update: 2021-12-02