[1]刘洪娟 徐亚伟.CRISPR/Cas9基因编辑在心血管领域的应用进展[J].心血管病学进展,2021,(12):1117-1119.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.015]
 LIU Honghuan,XU Yawei.Application Progress of CRISPR/Cas9 Gene Editing in Cardiovascular[J].Advances in Cardiovascular Diseases,2021,(12):1117-1119.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.015]
点击复制

CRISPR/Cas9基因编辑在心血管领域的应用进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年12期
页码:
1117-1119
栏目:
综述
出版日期:
2021-12-25

文章信息/Info

Title:
Application Progress of CRISPR/Cas9 Gene Editing in Cardiovascular
作者:
刘洪娟 徐亚伟
(上海第十人民医院心内科,上海 200072)
Author(s):
LIU Honghuan XU Yawei
(Department of Cardiology,Shanghai Tenth Peoples Hospital,Shanghai 200072,China)
关键词:
CRISPR/Cas9心血管基因编辑
Keywords:
CRISPR/Cas9CardiovascularGene editor
DOI:
10.16806/j.cnki.issn.1004-3934.2021.12.015
摘要:
CRISPR/Cas9是一种新的基因干预手段,已广泛应用于肿瘤和罕见病的临床治疗,但在心血管研究中应用有限,现分别从心脏发育、心血管疾病(如动脉粥样硬化、心力衰竭等)等相关领域研究进行总结归纳,以提取有效信息结合自身研究方向,促进CRISPR/Cas9在心血管基础研究中的应用。
Abstract:
CRISPR/Cas9 is a new genetic intervention method,which has been widely used in the clinical treatment of tumors and rare diseases,but its application in basic research on cardiovascular diseases is limited. Therefore,this article focuses on cardiac development and cardiovascular diseases (such as atherosclerosis,heart failure,etc.) and other related basic researches are summarized in order to extract effective information and combine their own research directions to promote the application of CRISPR/Cas9 in cardiovascular basic research.

参考文献/References:

[1] Jinek M,Chylinski K,Fonfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science,2012,337(6096):816-821.

[2] Smithies O,Gregg RG,Boggs SS,et al. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination [J]. Nature,1985,317(6034):230-234.

[3] Zhang F,Wen Y,Guo X. CRISPR/Cas9 for genome editing: progress,implications and challenges[J]. Hum Mol Genet,2014,23(R1):R40-R46.

[4] Cong L,Ran FA,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.

[5] Mali P,Yang L,Esvelt KM,et al. RNA-guided human genome engineering via Cas9[J]. Science,2013,339(6121):823-826.

[6] Hsu PD,Lander ES,Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell,2014,157(6):1262-1278.

[7] Shalem O,Sanjana NE,Hartenian E,et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science,2014,343(6166):84-87.

[8] Platt RJ,Chen S,Zhou Y,et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J]. Cell,2014,159(2):440-455.

[9] Torphy TJ,Fine CF,Burman M,et al. Lower esophageal sphincter relaxation is associated with increased cyclic nucleotide content[J].Am J Physiol,1986,251(6 Pt 1):G786-G793.

[10] Adli M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018 ,9(1):1911.

[11] Wang H,Yang H,Shivalila CS,et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell,2013,153(4):910-918.

[12] Vermersch E,Jouve C,Hulot JS. CRISPR/Cas9 gene-editing strategies in cardiovascular cells[J]. Cardiovasc Res,2020,116(5):894-907.

[13] Ley TJ,Miller C,Ding L,et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J]. New Engl J Med,2013,368(22):2059-2074.

[14] Biagioni A,Skalamera I,Peri S,et al. Update on gastric cancer treatments and gene therapies[J]. Cancer Metastasis Rev,2019,38(3):537-548.

[15] Matano M,Date S,Shimokawa M,et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids[J]. Nat Med, 2015,21(3):256- 262.

[16] Zych AO,Bajor M,Zagozdzon R. Application of genome editing techniques in immunology[J].Arch Immunol Ther Exp (Warsz),2018,66(4):289-298.

[17] Memi F,Ntokou A,Papangeli I. CRISPR/Cas9 gene-editing:research technologies,clinical applications and ethical considerations[J]. Semin Perinatol,2018,42(8):487-500.

[18] Garmy-Susini B,Delmas E,Gourdy P,et al. Role of fibroblast growth factor-2 isoforms in the effect of estradiol on endothelial cell migration and proliferation[J]. Circ Res,2004,94(10):1301-1309.

[19] Yamamoto S,Ooshima Y,Nakata M,et al. Efficient gene-targeting in rat embryonic stem cells by CRISPR/Cas and generation of human kynurenine aminotransferase Ⅱ (KAT Ⅱ) knock-in rat[J]. Transgenic Res,2015,24(6):991-1001.

[20] Fan Z,Perisse IV,Cotton CU,et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene[J]. JCI insight,2018,3(19):e123529.

[21] Nishiga M,Qi LS,Wu JC. Therapeutic genome editing in cardiovascular diseases[J]. Adv Drug Deliv Rev,2021,168:147-157.

[22] Sharma G,Sharma AR,Bhattacharya M,et al. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases[J]. Mol Ther,2021,29(2):571-586.

[23] Zeng Y,Li J,Li G,et al. Correction of the marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos[J]. Mol Ther,2018,26(11):2631-2637.

[24] Chen D,Zhang Z,Chen C,et al. Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism[J].Nucleic Acids Res,2019,47(10):5341-5355.

[25] Chapman KM,Medrano GA,Jaichander P,et al. Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells[J]. Cell Rep,2015,10(11):1828-1835.

[26] Guo M,Xu Y,Dong Z,et al. Inactivation of ApoC3 by CRISPR/Cas9 Protects Against Atherosclerosis in Hamsters[J]. Circ Res,2020,127(11):1456-1458.

[27] Zhao H,Li Y,He L,et al. In vivo AAV-CRISPR/Cas9-mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia[J]. Circulation,2020,141(1):67-79.

[28] Wang L,Luo JY,Li B,et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow[J]. Nature,2016,540(7634):579-582.

[29] Sano S,Oshima K,Wang Y,et al. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease[J]. Circ Res,2018,123(3):335-341.

[30] Schoger E,Carroll KJ,Iyer LM,et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart[J]. Circ Res,2020,126(1):6-24.

[31] Hofsteen P,Robitaille AM,Chapman DP,et al. Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling[J]. Proc Natl Acad Sci U S A,2016,113(4):1002-1007.

[32] Zannas AS,Jia M,Hafner K,et al. Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk[J]. Proc Natl Acad Sci U S A,2019,116(23):11370-11379.

[33] Jeong IS,Park Y,Ryu HA,et al. Corrigendum to "dual chemotactic factors-secreting human amniotic mesenchymal stem cells via TALEN-mediated gene editing enhanced angiogenesis" [Int. J. Cardiol. 260(2018) 156-162][J]. Int J Cardiol ,2018,263:186.

[34] Doetschman T,Georgieva T. Gene editing with CRISPR/Cas9 RNA-directed nuclease[J]. Circ Res,2017,120(5):876-894.

[35] German DM,Mitalipov S,Mishra A,et al. Therapeutic genome editing in cardiovascular diseases[J]. JACC Basic Transl Sci,2019,4(1):122-131.

相似文献/References:

[1]许霏 王永明 沈雳.CRISPR/Cas9技术在遗传性心肌疾病研究中的进展[J].心血管病学进展,2019,(9):1229.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.011]
 XU Fei,WANG Yongming,SHEN Li.CRISPR/Cas9 Technologies in Inherited Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(12):1229.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.011]
[2]林筝鸣 钱航 李东锋 许浩 陈继舜 闵新文 陈俊 杨汉东.胰高血糖素样肽-1受体敲除H9c2细胞株建立及其抗凋亡作用初探[J].心血管病学进展,2022,(9):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
 LIN Zhengming,QIAN Hang,LI Dongfeng,et al.Establishment of Glucagon-Like Peptide-1 Receptor Knockout H9c2 Cell Line and Its Anti-Apoptotic Effect[J].Advances in Cardiovascular Diseases,2022,(12):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]

备注/Memo

备注/Memo:
通信作者:徐亚伟,E-mail:liuerfenfei@126.com
收稿日期:2021-05-15
更新日期/Last Update: 2022-01-07