[1]戴承晔 邓毅凡 徐笑挺 何胜虎 张晶.N6-甲基腺苷修饰与心血管疾病关系研究[J].心血管病学进展,2022,(1):48-51.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.013]
 DAI Chengye,DENG Yifan,XU Xiaoting,et al.The Relationship Between N6-Methyladenosine Modification and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(1):48-51.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.013]
点击复制

N6-甲基腺苷修饰与心血管疾病关系研究()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年1期
页码:
48-51
栏目:
出版日期:
2022-01-25

文章信息/Info

Title:
The Relationship Between N6-Methyladenosine Modification and Cardiovascular Disease
作者:
戴承晔1 邓毅凡2 徐笑挺1 何胜虎2 张晶2
(1.大连医科大学扬州临床医学院,江苏 扬州 225001;2.扬州大学临床医学院 江苏省苏北人民医院,江苏 扬州 225001)
Author(s):
DAI Chengye1 DENG Yifan2 XU Xiaoting1 HE Shenghu2 ZHANG Jing2
(1.The Yangzhou School of Clinical Medicine of Dalian Medical University,Yangzhou 225001,Jiangsu,China; 2.Clinical Medical College,Yangzhou University,Northern Jiangsu People’s Hospital of Jiangsu Province,Yangzhou 225001,Jiangsu,China)
关键词:
N6-甲基腺苷心力衰竭动脉粥样硬化
Keywords:
N6-methyladenosineHeart failureAtherosclerosis
DOI:
10.16806/j.cnki.issn.1004-3934.2022.01.013
摘要:
N6-甲基腺苷(m6A)修饰是一种原核生物和真核生物中广泛存在的转录后RNA修饰,涉及多种类型的RNA。在信使RNA中,m6A修饰可以影响包括二级结构、亚细胞定位、核转运、翻译和降解等信使RNA的加工和代谢。m6A修饰在疾病诊断、疗效评估和预后判断等方面具有突出优势。现总结当前文献对于m6A修饰的认识,简述其在心血管疾病中的最新研究进展。
Abstract:
N6-methyladenosine(m6A) modification is a post-transcriptional RNA modification widely found in prokaryotes and eukaryotes,involving many types of RNA. In messenger RNA,m6A modification can affect the processing and metabolism of messenger RNA,including the secondary structure,subcellular localization,nuclear transport,translation and degradation. m6A modification have outstanding advantages in disease diagnosis and efficacy evaluation and prognosis. This review aims to summarize the present knowledge of m6A modification and describe its latest progress in cardiovascular disease research.

参考文献/References:

[1].Zhao D,Liu J,Wang M,et al. Epidemiology of cardiovascular disease in China:current features and implications[J]. Nat Rev Cardiol,2019,6(4):203-212.?
[2].[2] Parashar NC,Parashar G,Nayyar H,et al. N6-adenine DNA methylation demystified in eukaryotic genome:from biology to pathology[J]. Biochimie,2018,144:56-62.
[3].[3] Gan H,Hong L,Yang F,et al. Progress in epigenetic modification of mRNA and the function of m6A modification[J]. Sheng Wu Gong Cheng Xue Bao,2019,35(5):775-783.
[4].[4] Wang S,Chai P,Jia R,et al. Novel insights on m6A RNA methylation in tumorigenesis:a double-edged sword[J]. Mol Cancer,2018,17(1):101.
[5].[5] Yang Y, Hsu PJ,Chen YS,et al. Dynamic transcriptomic m6A decoration:writers,erasers,readers and functions in RNA metabolism[J]. Cell Res,2018,28(6):616-624.
[6].[6] Wen J,Lv R,Ma H,et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal[J]. Mol Cell,2018,69(6):1028-1038.
[7].[7] Zaccara S,Ries RJ,Jaffrey SR. Reading,writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol,2019,20(10):608-624.
[8].[8] Kurmani S,Squire I. Acute heart failure:definition,classification and epidemiology[J]. Curr Heart Fail Rep,2017,14(5):385-392.
[9].[9] Dorn LE,Lasman L,Chen J,et al. The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J]. Circulation,2019,139(4):533-545.
[10].[10] Berulava T,Buchholz E,Elerdashvili V,et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation[J]. Eur J Heart Fail,2020,22(1):54-66.
[11].[11] Mathiyalagan P,Adamiak M,Mayourian J,et al. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair[J]. Circulation,2019,139(4):518-532.
[12].[12] Slobodin B,Han R,Calderone V,et al.Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation[J]. Cell,2017,169(2):326-337.
[13].[13] Liu Z,Ni J,Li L,et al. SERCA2a:a key protein in the Ca2+ cycle of the heart failure[J]. Heart Fail Rev,2020,25(3):523-535.
[14].[14] Zhang B,Xu Y,Cui X,et al. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction[J]. Front Cardiovasc Med,2021,8:647806.
[15].[15] Kmietczyk V,Riechert E,Kalinski L,et al. M6A-mRNA methylation regulates cardiac gene expression and cellular growth[J]. Life Sci Alliance,2019,2(2):e201800233.
[16].[16] Carnevali L,Graiani G,Rossi S,et al. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice[J]. PLoS One,2014,9(4):e95499.
[17].[17] Mo XB,Lei SF,Zhang YH,et al. Detection of m6A-associated SNPs as potential functional variants for coronary artery disease[J]. Epigenomics,2018,10(10):1279-1287.
[18].[18] Guo M,Yan R,Ji Q,et al. IFN regulatory Factor-1 induced macrophage pyroptosis by modulating m6A modification of circ-0029589 in patients with acute coronary syndrome[J]. Int Immunopharmacol,2020,86:106800.
[19].[19]Zhang BY,Han L,Tang YF,et al. METTL14 regulates m6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion[J]. Eur Rev Med Pharmacol Sci,2020,24(12):7015-7023.
[20].[20]Jian D,Wang Y,Jian L,et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications[J]. Theranostics,2020,10(20):8939-8956.
[21].[21] Mo X,Lei S,Zhang Y,et al. Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci[J]. Pharmacogenomics J,2019,19(4):347-357.
[22].[22] Zheng Y,Nie P,Peng D,et al. M6AVar:a database of functional variants involved in m6A modification[J]. Nucleic Acids Res,2018,46(D1):D139-D145.
[23].[23] Song T,Yang Y,Wei H,et al. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation[J]. Nucleic Acids Res,2019,47(12):6130-6144.
[24].[24] Han Z,Wang X,Xu Z,et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1[J]. Theranostics,2021,11(6):3000-3016.
[25].[25] Yi D,Wang Q,Zhao Y,et al. Alteration of N6-methyladenosine mRNA methylation in a rat model of cerebral ischemia-reperfusion injury[J]. Front Neurosci,2021,15:605654.
[26].[26] Wang X,Wu R,Liu Y,et al. M6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7[J]. Autophagy,2020,16(7):1221-1235.
[27].[27]Shen W,Li H,Su H,et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt[J]. Mol Cell Biochem,2021,476(5):2171-2179.
[28].[28] Song H,Feng X,Zhang H,et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA,which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy,2019,15(8):1419-1437.
[29].[29] Lee SJ,Lee IK,Jeon JH. Vascular calcification—New insights into its mechanism[J]. Int J Mol Sci,2020,21(8):2685.
[30].[30] Chen J,Ning Y,Zhang H,et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate[J]. Life Sci,2019,239:117034.
[31].[31] Mo XB,Lei SF,Zhang YH,et al. Examination of the associations between m6A-associated single-nucleotide polymorphisms and blood pressure[J]. Hypertens Res,2019,42(10):1582-1589.
[32].[32] Su H,Wang G,Wu L,et al. Transcriptome-wide map of m6A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension[J]. BMC Genomics,2020,21(1):39.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(1):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(1):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(1):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(1):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(1):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(1):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

备注/Memo

备注/Memo:
基金项目:江苏省卫生健康委科研课题Z2018032);扬州市重点研发(社会发展)项目(YZ2020103)
更新日期/Last Update: 2022-02-17