[1]高婧晗 刘飞 杨晓蕾 夏云龙.钙离子稳态的调控在糖尿病相关心房颤动中的作用[J].心血管病学进展,2021,(10):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
 GAO Jinghan,LIU Fei,YANG Xiaolei,et al.Regulation of Calcium Homeostasis in Diabetes-Related Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(10):888.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.006]
点击复制

钙离子稳态的调控在糖尿病相关心房颤动中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年10期
页码:
888
栏目:
综述
出版日期:
2021-10-25

文章信息/Info

Title:
Regulation of Calcium Homeostasis in Diabetes-Related Atrial Fibrillation
作者:
高婧晗 刘飞 杨晓蕾 夏云龙
(大连医科大学附属第一医院,辽宁 大连 116011)
Author(s):
GAO Jinghan LIU FeiYANG XiaoleiXIA Yunlong
(The First Affiliated Hospital of Dalian Medical University,Dalian 116011,Liaoning,China)
关键词:
心房颤动糖尿病钙离子
Keywords:
Atrial fibrillationDiabetes mellitusCalcium
DOI:
10.16806/j.cnki.issn.1004-3934.2021.10.006
摘要:
糖尿病作为最常见的慢性疾病,是心房颤动最重要的危险因素之一。众多研究表明心房电重构在糖尿病相关心房颤动的发生机制中起重要作用,而钙超载是引起心房电重构发生的重要原因之一。心肌细胞主要通过调节钙调蛋白信号通路和L型钙通道来调控细胞内的钙离子浓度从而维持钙稳态,同时特异性miRNA的表达改变与钙稳态失衡密切相关。本文将从钙离子稳态失衡的角度探讨糖尿病诱发心房颤动的机制进展。
Abstract:
Diabetes mellitus,as the most common chronic disease,is one of the most important risk factors for atrial fibrillation. Numerous studies have shown that atrial electrical remodeling plays an important role in the pathogenesis of diabetes-related atrial fibrillation. Calcium overload is one of the most important causes of atrial electrical remodeling. Cardiomyocytes mainly regulate the intracellular calcium ion concentration by regulating calmodulin signaling pathway and L-type calcium channel to maintain calcium homeostasis. In the meanwhile,the specific expression changes of miRNA are closely related to the calcium homeostasis. This review will discuss the progress of the mechanism of diabetes-related atrial fibrillation from the perspective of calcium homeostasis

参考文献/References:

[1] Wang A, Green JB, Halperin JL, et al. Atrial fibrillation and diabetes mellitus[J]. J Am Coll Cardiol,2019,74(8):1107-1115.

[2] Kumar N, Echouffo-Tcheugui JB. Diabetes and atrial fibrillation in hospitalized patients in the United States[J]. Clin Cardiol,2021,44(3):340-348.

[3] Anselmino M, Matta M, D’Ascenzo F, et al. Catheter ablation of atrial fibrillation in patients with diabetes mellitus: a systematic review and meta-analysis[J]. Europace,2015,17(10):1518-1525.

[4] Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy[J]. Lancet,2015,385(9982):2107-2117.

[5] Goudis CA, Korantzopoulos P, Ntalas IV, et al. Diabetes mellitus and atrial fibrillation: Pathophysiological mechanisms and potential upstream therapies[J]. Int J Cardiol,2015,184:617-622.

[6] 顾俊,胡伟,刘旭. 心房重构研究进展[J]. 国际心血管病杂志,2014,41(6):398-401.

[7] Nso N, Bookani KR, Metzl M, et al. Role of inflammation in atrial fibrillation: a comprehensive review of current knowledge[J]. J Arrhythm,2021,37(1):1-10.

[8] 卢振华,范莹,胡家顺,等. 糖尿病并发心房颤动机制的研究进展[J]. 心肺血管病杂志,2017,36(3):234-236.

[9] 王红丽,李志强,周贤惠,等. 肌浆网钙ATP酶过表达对心房颤动兔心房心电生理的影响[J]. 中华临床医师杂志(电子版),2014,8(16):2997-3001.

[10] 吴丹丹,陈瑜,张腾. 房颤发病机制研究新进展[J]. 中西医结合心脑血管病杂志,2016,14(12):1342-1346.

[11] 付茜,潘一龙,李斌,等. 糖尿病源性心房颤动——心房电重构的研究进展[J]. 中国实用内科杂志,2018,38(7):658-661.

[12] 高秋实,郝丽英,赵美眯. 钙调蛋白信号转导途径的机制及其对心律失常的影响[J]. 解剖科学进展,2016,22(4):455-458.

[13] Erickson JR, Pereira L, Wang L, et al. Diabetic hyperglycaemia activates CaMKⅡ and arrhythmias by O-linked glycosylation[J]. Nature,2013,502(7471):372-376.

[14] Wang X, Chen X, Dobrev D, et al. The crosstalk between cardiomyocyte calcium and inflammasome signaling pathways in atrial fibrillation[J]. Pflugers Arch,2021,473(3):389-405.

[15] Hamilton S, Veress R, Belevych A, et al. The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes[J]. Pflugers Arch,2021,473(3):377-387.

[16] Huang W, Wang Y, Cao YG, et al. Antiarrhythmic effects and ionic mechanisms of allicin on myocardial injury of diabetic rats induced by streptozotocin[J]. Naunyn Schmiedebergs Arch Pharmacol,2013,386(8):697-704.

[17] Sommese L, Valverde C A, Blanco P, et al. Ryanodine receptor phosphorylation by CaMKⅡ promotes spontaneous Ca (2+) release events in a rodent model of early stage diabetes: The arrhythmogenic substrate[J]. Int J Cardiol,2016,202:394-406.

[18] Hegyi B, Bers DM, Bossuyt J. CaMKⅡ signaling in heart diseases: emerging role in diabetic cardiomyopathy[J]. J Mol Cell Cardiol,2019,127:246-259.

[19] Vafiadaki E, Papalouka V, Arvanitis DA, et al. The role of SERCA2a/PLN complex, Ca(2+) homeostasis, and anti-apoptotic proteins in determining cell fate[J]. Pflugers Arch,2009,457(3):687-700.

[20] Dillmann WH. Diabetic Cardiomyopathy[J]. Circ Res,2019,124(8):1160-1162.

[21] Lombardi M, Lazzeroni D, Pisano A, et al. Mitochondrial energetics and Ca2+-activated ATPase in obstructive hypertrophic cardiomyopathy[J]. J Clin Med,2020,9(6):1799.

[22] Shao CH, Capek HL, Patel KP, et al. Carbonylation contributes to SERCA2a activity loss and diastolic dysfunction in a rat model of type 1 diabetes[J]. Diabetes,2011,60(3):947-959.

[23] Pereira L, Ruiz-Hurtado G, Rueda A, et al. Calcium signaling in diabetic cardiomyocytes[J]. Cell Calcium,2014,56(5):372-380.

[24] Mesubi OO, Anderson ME. Atrial remodelling in atrial fibrillation: CaMKⅡ as a nodal proarrhythmic signal[J]. Cardiovasc Res,2016,109(4):542-557.

[25] Brundel BJ, Ausma J, van Gelder IC, et al. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation[J]. Cardiovasc Res,2002,54(2):380-389.

[26] 张若愚. 2型糖尿病及其药物对心房颤动的影响[J]. 心血管病学进展,2016,37(4):337-341.

[27] Yuan Y, Zhao J, Gong Y, et al. Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel[J]. Cell Death Dis,2018,9(9):873.

[28] Kura B, Kalocayova B, Devaux Y, et al. Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection[J]. Int J Mol Sci,2020,21(3):700.

[29] 孙红云,赵琪,王淑颜,等. microRNA对心脏离子通道调控作用的研究进展[J]. 世界临床药物,2016,37(12):840-845.

[30] Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications[J]. Cardiovasc Res,2012,93(4):583-593.

[31] Belevych AE, Sansom SE, Terentyeva R, et al. MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex[J]. PLoS One,2011,6(12):e28324.

[32] Barana A, Matamoros M, Dolz-Gaitón P, et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current[J]. Circ Arrhythm Electrophysiol,2014,7(5):861-868.

相似文献/References:

[1]贺鹏康,周菁.心房颤动治疗新技术——冷冻球囊消融[J].心血管病学进展,2016,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
 HE Pengkang,ZHOU Jing.Cryoballoon Ablation, A Novel Technology for Atrial Fibrillation Treatment[J].Advances in Cardiovascular Diseases,2016,(10):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
[2]都明辉,施海峰*,佟佳宾,等.心房颤动消融相关性无症状性脑缺血[J].心血管病学进展,2016,(1):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
 DU Minghui,SHI Haifeng*,TONG Jiabin,et al.Silent Cerebral Ischemia Related to Atrial Fibrillation Ablation[J].Advances in Cardiovascular Diseases,2016,(10):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
[3]郑环杰,综述,肖骅,等.心房颤动抗栓治疗研究进展[J].心血管病学进展,2016,(2):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
 ZHENG Huanjie,XIAO Hua.Progress of Antithrombotic Therapy in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
[4]张清,综述,罗素新,等.新型Xa 因子抑制剂———依度沙班在心房颤动患者抗凝治疗中的研究进展[J].心血管病学进展,2016,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
 ZHANG Qing,LUO Suxin,TANG Jiong.Novel Factor Xa Inhibitors—Edoxaban in Prevention of Stroke in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
[5]胡红玲,综述,罗素新,等.预防非瓣膜性心房颤动性脑卒中的治疗新进展[J].心血管病学进展,2016,(3):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
 HU Hongling,LUO Suxin.New Progress in the Treatment for Cerebral Apoplexy of Nonvalvular Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
[6]王超,杨国澍,综述,等.关附甲素治疗心房颤动的研究进展[J].心血管病学进展,2016,(3):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
 WANG Chao,YANG Guoshu,CAI Lin,et al.Research Progress of the Treatment of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
[7]张若愚,综述,殷跃辉,等.2型糖尿病及其药物对心房颤动的影响[J].心血管病学进展,2016,(4):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
 ZHANG Ruoyu,YIN Yuehui.Effect of Type 2 Diabetes Mellitus and Diabetic Drugs on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):337.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.003]
[8]徐小东,综述,杨东辉,等.决奈达隆治疗心房颤动的现状及展望[J].心血管病学进展,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
 XU Xiaodong,YANG Donghui.Status and Prospect of Dronedarone in Treating Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
[9]张莎,储国俊,吴弘.经导管左心耳封堵术的临床应用进展[J].心血管病学进展,2015,(5):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
 ZHANG Sha,CHU Guojun,WU Hong.Clinial Application Advances in Left Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2015,(10):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
[10]汪俊,杨浩.心房颤动射频消融的术式演变[J].心血管病学进展,2015,(5):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
 WANG Jun,YANG Hao.Evolution of Radiofrequency Ablation of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2015,(10):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
[11]夏熠 刘飞 夏云龙.糖尿病合并心房颤动的相关研究进展[J].心血管病学进展,2020,(1):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]
 XIA YiLIU FeiXIA Yunlong.Research Progress in Diabetes Mellitus Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(10):27.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.008]

更新日期/Last Update: 2021-12-02