[1]马赛 左庆娟 张国瑞 郭艺芳.钠氢交换体可能是钠-葡萄糖共转运蛋白-2抑制剂心力衰竭获益及不良反应的潜在靶点[J].心血管病学进展,2021,(8):686-690.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.004]
 MA Sai,ZUO Qingjuan,ZHANG Guorui,et al.Na+/H+?Exchanger:The?Potential?Target?for?the?Benefits?and?Adverse?Effects?of?Sodium-glucose?Co-Transporter?2?Inhibitors?in?Heart?Failure[J].Advances in Cardiovascular Diseases,2021,(8):686-690.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.004]
点击复制

钠氢交换体可能是钠-葡萄糖共转运蛋白-2抑制剂心力衰竭获益及不良反应的潜在靶点()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年8期
页码:
686-690
栏目:
综述
出版日期:
2021-08-25

文章信息/Info

Title:
Na+/H+?Exchanger:The?Potential?Target?for?the?Benefits?and?Adverse?Effects?of?Sodium-glucose?Co-Transporter?2?Inhibitors?in?Heart?Failure
作者:
马赛1 左庆娟2 张国瑞3 郭艺芳2
(1.河北省人民医院疼痛科,河北 石家庄 0500512.河北省人民医院老年心血管内科,河北 石家庄 0500513.河北医科大学附属石家庄第三医院心内科,河北 石家庄 050011)
Author(s):
MA Sai1ZUO Qingjuan2ZHANG Guorui3GUO Yifang2
(1.Pain Department ,Hebei General Hospital,Shijiazhuang 050051 ,Hebei,China 2.Geriatric Cardiology Department,Hebei General Hospital,Shijiazhuang 050051 ,Hebei,China 3.Cardiology Department,The Third Hospital of Shijiazhuang,Shijiazhuang 050011 ,Hebei,China)
关键词:
钠-葡萄糖共转运蛋白2抑制剂心力衰竭钠氢交换体
Keywords:
Sodium-glucose co-transporter 2Heart failureNa+/H+ exchanger
DOI:
10.16806/j.cnki.issn.1004-3934.2021.08.004
摘要:
心力衰竭是多种心血管疾病的终末阶段,是老年人致死致残的重要原因。钠-葡萄糖共转运蛋白2抑制剂(SGLT2i)是一类新型降糖药物。多项临床试验证实SGLT2i可显著降低2型糖尿病患者的心血管事件、尤其是心力衰竭风险,但其心脏保护机制尚不明确。钠氢交换体1是参与致心力衰竭多种信号通路的重要下游分子,参与了心力衰竭的病理生理过程。现总结在SGLT2i治疗心力衰竭过程中钠氢交换体1所发挥的潜在影响及其临床意义。
Abstract:
Heart failure is the terminal stage of cardiovascular diseases and an important cause of death and disability in the elderly. Sodium-glucose cotransporter 2 inhibitor (SGLT2i) is a new class of hypoglycemic drugs. Multiple clinical trials have demonstrated that SGLT2i significantly reduces the risk of cardiovascular events,especially heart failure,in patients with type 2 diabetes. But the cardioprotective mechanism remains unclear. Na+/H+?Exchanger1 (NHE-1) is an important downstream molecule involved in multiple heart failure signaling pathways and the pathophysiological process of heart failure. This article summarized the potential effects and clinical significance s of NHE-1 in the treatment of heart failure with SGLT2 i.

参考文献/References:


[1] 中华医学会心血管病学分会心力衰竭学组,中国医师协会心力衰竭专业委员会中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南[J]. 中华心血管病杂志,2018,46(10):760-789.

[2] Kemp G,Young H,Fliegel L. Structure and function of the human Na+/H+ exchanger isoform 1[J]. Channels ,2008,2(5):329-336.

[3] Madonna R,de Caterina R. Sodium-hydrogen exchangers (NHE) in human cardiovascular diseases:interfering strategies and their therapeutic applications[J]. Vascul Pharmacol,2013,59(5-6):127-130.

[4] Donowitz M,Ming TC,Fuster D. SLC9/NHE gene family,a plasma membrane and organellar family of Na+/H+ exchangers[J]. Mol Aspects Med ,2013,34(2-3):236-251.

[5] Zelniker TA,Wiviott SD,Raz I,et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes:a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet,2019,393(10166):31-39.

[6] Yamazaki T,Komuro I,Kudoh S,et al. Role of ion channels and exchangers in mechanical stretch–induced cardiomyocyte hypertrophy[J]. Circ Res,1998,82(4):430-437.

[7] Ennis IL,Escudero EM,Console GM,et al. Regression of isoproterenol-induced cardiac hypertrophy by Na+/H+ exchanger inhibition[J]. Hypertension ,2002,34(9):1324-1329.

[8] Zeymer U,Suryapranata H,Monassier JP,et al. The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the evaluation of the safety and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI) trial[J]. J Am Coll Cardiol ,2001,38(6):E1644-E1650.

[9] Chaitman BR. A review of the GUARDIAN trial results:clinical implications and the significance of elevated perioperative CK-MB on 6-month survival[J]. J Card Surg,2003,18(s1):13-20.

[10] Baker WL,Smyth LR,Riche DM,et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure:A systematic review and meta-analysis[J]. J Am Soc Hypertens,2014,8(4):262-275.

[11] Inzucchi SE,Zinman B,Wanner C,et al. SGLT-2 inhibitors and cardiovascular risk:Proposed pathways and review of ongoing outcome trials[J]. Diab Vasc Dis Res,2015,12(2):90-100.

[12] Karg MV,Bosch A,Kannenkeril D,et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content:a randomised controlled trial[J]. Cardiovasc Diabetol,2018,17(1):5.

[13] Cherney DZI,Perkins BA,Soleymanlou N,et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus[J]. Circulation,129(5):587-597.

[14] Patel KV,Bahnson JL,Gaussoin SA,et al. Association of baseline and longitudinal changes in body composition measures with risk of heart failure and myocardial infarction in type 2 diabetes findings from the look AHEAD trial[J]. Circulation,2020,142(25):2420-2430.

[15] Packer M. Lessons learned from the DAPA-HF trial concerning the mechanisms of benefit of SGLT2 inhibitors on heart failure events in the context of other large-scale trials nearing completion[J]. Cardiovasc Diabetol,2019,18(1):129.

[16] Baartscheer A,Schumacher CA,Wüst Rob CI,et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na +/H+ exchanger in rats and rabbits[J]. Diabetologia ,2017,60(3):568-573.

[17] Uthman L,Baartscheer A,Bleijlevens B,et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts:inhibition of Na+/H+ exchanger ,lowering of cytosolic Na+ and vasodilation[J]. Diabetologia ,2018,61(3):722-726.

[18] Ye YM,Jia XM,Mandeep B,et al. Dapagliflozin attenuates Na+/H+ exchanger-1 in cardiofibroblasts via AMPK activation[J]. Cardiovasc Drugs Ther ,2018,32(6):553-558.

[19] Kim JO,Kwon EJ,Song DW,et al. miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+ exchanger-1 in the heart[J]. BMB Rep ,2016,49(4):208-213.

[20] Uthman L, Nederlof R, Eerbeek O,et al. Delayed ischemic contracture onset by Empagliflozin associates with NHE-1 inhibition and is dependent on insulin in isolated mouse hearts[J]. Cardiovasc Res,2019,115(10):1533-1545.

[21] McMurray JJV,Wheeler DC,Stefánsson BV,et al. Effect of dapagliflozin on clinical outcomes in patients with chronic kidney disease,with and without cardiovascular disease[J]. Circulation,2021,143(5):438-448.

[22] Pessoa TD,Campos LCG,Carraro-Lacroix L,et al. Functional role of glucose metabolism,osmotic stress,and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule[J]. J Am Soc Nephrol ,2014,25(9):2028-2039.

[23] Gallo LA,Wright EM,VallonV. Probing SGLT2 as a therapeutic target for diabetes:Basic physiology and consequences[J]. Diab Vasc Dis Res,2015,12(2):78-89.

[24] Kumar S,Costello AJ,Colman PG. Fourniers gangrene in a man on empagliflozin for treatment of Type2 diabetes[J]. Diabet Med,2017,34(11):1646-1648.

[25] Inzucchi SE,Iliev H,Pfarr E,et al. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial[J]. Diabetes Care,2018,41(1):e4-e5.

[26] Chang YK,Choi H,Jeong JY,et al. Correction:dapagliflozin,SGLT2 inhibitor,attenuates renal ischemia-reperfusion injury[J]. PLoS One,2016,11(7):e0160478.

[27] Lee G,Choi S,Kim K,et al. Association of hemoglobin concentration and its change with cardiovascular and all‐cause mortality[J]. J Am Heart Assoc,2018,7(3):e007723.

[28] Cherney DZ,Perkins BA,Soleymanlou N,et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus[J]. Circulation,2014,129(5):587-597.

[29] Chilton R,Tikkanen I,Cannon CP,et al. Effects of empaglilozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes[J]. Diabetes Obes Metab,2015,17(12):1180-1193.

[30] Ferrannini E,Baldi S,Frascerra S,et al. Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes[J]. J Food Sci Technol,2016,52(6):3158-3168.

[31] Ferrannini E,Mark M,Mayoux E. CV protection in the EMPA-REG OUTCOME trial:a "thrifty substrate" hypothesis[J]. Diabetes Care,2016,39(7):1108-1114.

[32] Mudaliar S,Alloju S,Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis[J]. Diabetes Care,2016,39(7):1115-1122.

[33] Rose KL,Watson AJ,Drysdale TA,et al. Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodium-hydrogen exchange and anion transport[J]. Am J Physiol Endocrinol Metab,2015,309(4):E370-E379.

[34] Bilezikian JP,Watts NB,Keith U,et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin[J]. J Clin Endocrinol Metab,2016,101(1):44-51.

[35] Ljunggren ?,Bolinder J,Johansson L,et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin[J]. Diabetes Obes Metab,2012,14(11):990-999.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(8):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(8):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(8):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(8):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(8):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(8):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(8):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(8):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(8):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(8):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
[11]李少杰 苏康康 王震 谷剑 陈淑霞.钠-葡萄糖共转运蛋白2抑制剂对心律失常影响的研究进展[J].心血管病学进展,2023,(3):251.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.014]
 LI S haojie,SU K angkang,WANG Z hen,et al.Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Cardiac Arrhythmias[J].Advances in Cardiovascular Diseases,2023,(8):251.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.014]
[12]高棣英 吴铿.SGLT2抑制剂对射血分数保留的心力衰竭的保护作用及机制研究进展[J].心血管病学进展,2024,(3):224.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.008]
 GAO Diying,WU Keng.Protective Effect and Mechanism of SGLT2 Inhibitor on Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2024,(8):224.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.008]

备注/Memo

备注/Memo:
基金项目:河北省重点研发计划(19277787D) 河北省创新能力提升计划(199776249D) 通信作者:郭艺芳,E-mail:guoyifang@hotmail.com 收稿日期:2021-03-30
更新日期/Last Update: 2021-09-26