参考文献/References:
[1] Rudd K,Johnson S,Agesa K,et al. Global,regional,and national sepsis incidence and mortality,1990—2017:analysis for the Global Burden of Disease Study[J]. Lancet,2020,395(10219):200-211.
[2] GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global,regional,and national incidence,prevalence,and years lived with disability for 354 diseases and injuries for 195 countries and territories,1990-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet,2018,392(10159):1789-1858.
[3] Jones N,Roalfe A,Adoki I,et al. Survival of patients with chronic heart failure in the community:a systematic review and meta-analysis[J]. Eur J Heart Fail,2019,21(11):1306-1325.
[4] Rhodes A,Evans L,Alhazzani W,et al. Surviving sepsis campaign:international guidelines for management of sepsis and septic shock:2016[J]. Intensive Care Med,2017,43(3):304-377.
[5] Bentzer P,Russell J,Walley K. Advances in sepsis research[J]. Clin Chest Med,2015,36(3):521-530.
[6] Taddonio M,Dolgachev V,Bosmann M,et al. Influence of lipopolysaccharide-binding protein on pulmonary inflammation in gram-negative pneumonia[J]. Shock,2015,43(6):612-619.
[7] Singer M,Deutschman C,Seymour C,et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA,2016,315(8):801-810.
[8] Griendling K,Minieri C,Ollerenshaw J,et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells[J]. Circ Res,1994,74(6):1141-1148.
[9] Schrier R,Wang W. Acute renal failure and sepsis[J]. N Engl J Med,2004,351(2):159-169.
[10] Suzuki Y,Ruiz-Ortega M,Lorenzo O,et al. Inflammation and angiotensin II[J]. Int J Biochem Cell Biol,2003,35(6):881-900.
[11] Bucher M,Hobbhahn J,Kurtz A. Nitric oxide-dependent down-regulation of angiotensin II type 2 receptors during experimental sepsis[J]. Crit Care Med,2001,29(9):1750-1755.
[12] Liu J,Li S,Liu J,et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients[J]. EBioMedicine,2020,55:102763.
[13] Liu Y,Yang Y,Zhang C,et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury[J]. Sci China Life Sci,2020,63(3):364-374.
[14] Hoffmann M,Kleine-Weber H,Schroeder S,et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell,2020,181(2):271-280.e8.
[15] Wan Y,Shang J,Graham R,et al. Receptor recognition by the novel coronavirus from Wuhan:an analysis based on decade-long structural studies of SARS coronavirus[J]. J Virol,2020,94(7):e00127-20.
[16] Hanff T,Harhay M,Brown T,et al. Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations[J]. Clin Infect Dis,2020,71(15):870-874.
[17] Yancy C,Jessup M,Bozkurt B,et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure:A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America[J]. Circulation,2017,136(6):e137-e161.
[18] Triposkiadis F,Karayannis G,Giamouzis G,et al. The sympathetic nervous system in heart failure physiology,pathophysiology,and clinical implications[J]. J Am Coll Cardiol,2009,54(19):1747-1762.
[19] Chaney E,Shaw A. Pathophysiology of fluid retention in heart failure[J]. Contrib Nephrol,2010,164:46-53.
[20] Weber K,Villarreal D. Role of aldosterone in congestive heart failure[J]. Postgrad Med,1993,93(5):203-207,211-202,216-208 passim.
[21] Peverill R. Understanding preload and preload reserve within the conceptual framework of a limited range of possible left ventricular end-diastolic volumes[J]. Adv Physiol Educ,2020,44(3):414-422.
[22] Miller W. Fluid volume overload and congestion in heart failure:time to reconsider pathophysiology and how volume is assessed[J]. Circ Heart Fail,2016,9(8):e002922.
[23] Youn J,Jung M,Yu H,et al. Increased frequency of CD4CD57 senescent T cells in patients with newly diagnosed acute heart failure:exploring new pathogenic mechanisms with clinical relevance[J]. Sci Rep,2019,9(1):12887.
[24] Moro-García M,Echeverría A,Galán-Artímez M,et al. Immunosenescence and inflammation characterize chronic heart failure patients with more advanced disease[J]. Int J Cardiol,2014,174(3):590-599.
[25] Adamo L,Rocha-Resende C,Prabhu SD,et al. Reappraising the role of inflammation in heart failure[J]. Nat Rev Cardiol,2020,17(suppl 1):1-17.
[26] Revuelta-López E,Lupón J,Lax A,et al. Differences in the interleukin-1β/soluble ST2 interplay between acute and chronic heart failure[J]. J Cardiovasc Transl Res,2020,13(5):864-866.
[27] Yasuda S,Lew W. AngiotensinⅡexacerbates lipopolysaccharide-induced contractile depression in rabbit cardiac myocytes[J]. Am J Physiol,1999,276(5):H1442-H1449.
[28] Ruiz-Ortega M,Ruperez M,Lorenzo O,et al. AngiotensinⅡregulates the synthesis of proinflammatory cytokines and chemokines in the kidney[J]. Kidney Int Suppl,2002,(82):S12-22.
[29] Yao X,Li T,He Z,et al. A pathological report of three COVID-19 cases by minimal invasive autopsies[J]. Zhonghua Bing Li Xue Za Zhi,2020,49(5):411-417.
[30] Tavazzi G,Pellegrini C,Maurelli M,et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock[J]. Eur J Heart Fail,2020,22(5):911-915.
[31] Unudurthi S,Luthra P,Bose R,et al. Cardiac inflammation in COVID-19:lessons from heart failure[J]. Life Sci,2020,260:118482.
[32] Marik PE. The physiology of volume resuscitation[J]. Curr Anesthesiol Rep,2014,4(4):353-359.
[33] Marik P. Fluid responsiveness and the six guiding principles of fluid resuscitation[J]. Crit Care Med,2016,44(10):1920-1922.
[34] Rhodes A,Evans L,Alhazzani W,et al. Surviving sepsis campaign:international guidelines for management of sepsis and septic shock:2016[J]. Crit Care Med,2017,43(3):304-377.
[35] Marik P,Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense[J]. Crit Care Med,2013,41(7):1774-1781.
[36] Monnet X,Marik P,Teboul J. Passive leg raising for predicting fluid responsiveness:a systematic review and meta-analysis[J]. Intensive Care Med,2016,42(12):1935-1947.
[37] Monge García M,Guijo González P,Gracia Romero M,et al. Effects of fluid administration on arterial load in septic shock patients[J]. Intensive Care Med,2015,41(7):1247-1255.
[38] Corl K,Napoli A,Gardiner F. Bedside sonographic measurement of the inferior vena cava caval index is a poor predictor of fluid responsiveness in emergency department patients[J]. Emerg Med Australas,2012,24(5):534-539.
[39] Saugel B,Ringmaier S,Holzapfel K,et al. Physical examination,central venous pressure,and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients:a prospective trial[J]. J Crit Care,2011,26(4):402-410.
[40] Monnet X,Rienzo M,Osman D,et al. Passive leg raising predicts fluid responsiveness in the critically ill[J]. Crit Care Med,2006,34(5):1402-1407.
[41] Douglas I,Alapat P,Corl K,et al. Fluid response evaluation in sepsis hypotension and shock:a randomized clinical trial[J]. Chest,2020,158(4):1431-1445.
[42] Toppen W,Aquije Montoya E,Ong S,et al. Passive leg raise:feasibility and safety of the maneuver in patients with undifferentiated shock[J]. J Intensive Care Med,2020,35(10):1123-1128.
[43] Liu V,Morehouse J,Marelich G,et al. Multicenter implementation of a treatment bundle for patients with sepsis and intermediate lactate values[J]. Am J Respir Crit Care Med,2016,193(11):1264-1270.
[44] Leisman D,Doerfler M,Ward M,et al. Survival benefit and cost savings from compliance with a simplified 3-hour sepsis bundle in a series of prospective,multisite,observational cohorts[J]. Crit Care Med,2017,45(3):395-406.
[45] Kuttab H,Lykins J,Hughes M,et al. Evaluation and predictors of fluid resuscitation in patients with severe sepsis and septic shock[J]. Crit Care Med,2019,47(11):1582-1590.
[46] Khan R,Khan N,Bauer S,et al. Association between volume of fluid resuscitation and intubation in high-risk patients with sepsis,heart failure,end-stage renal disease,and cirrhosis[J]. Chest,2020,157(2):286-292.
[47] Yunos N,Bellomo R,Story D,et al. Bench-to-bedside review:chloride in critical illness[J]. Crit Care Med,2010,14(4):226.
[48] Yunos N,Kim I,Bellomo R,et al. The biochemical effects of restricting chloride-rich fluids in intensive care[J]. Crit Care Med,2011,39(11):2419-2424.
[49] Yunos N,Bellomo R,Hegarty C,et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults[J]. JAMA,2012,308(15):1566-1572.
[50] Barea-Mendoza J,Chico-Fernández M,Montejo-González J. Balanced crystalloids versus saline in critically ill adults[J]. N Engl J Med,2018,378(20):1950-1951.
[51] Rochwerg B,Alhazzani W,Sindi A,et al. Fluid resuscitation in sepsis:a systematic review and network meta-analysis[J]. Ann Intern Med,2014,161(5):347-355.
[52] Chowdhury A,Cox E,Francis S,et al. A randomized,controlled,double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte? 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers[J]. Ann Surg,2012,256(1):18-24.
[53] Jansen TC,Bakker J. Pathophysiology of hyperlactatemia determines prognostic characteristics of lactate[J]. Intensive Care Med,2006,32:S107.
[54] Levy B,Desebbe O,Montemont C,et al. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states[J]. Shock,2008,30(4):417-421.
[55] Adamo L,Nassif M,Novak E,et al. Prevalence of lactic acidaemia in patients with advanced heart failure and depressed cardiac output[J]. Eur J Heart Fail,2017,19(8):1027-1033.
[56] Kawase T,Toyofuku M,Higashihara T,et al. Validation of lactate level as a predictor of early mortality in acute decompensated heart failure patients who entered intensive care unit[J]. J Cardiol,2015,65(2):164-170.