[1]王咏春 高红梅 刘芳 朱希瑶 徐茂青.治疗高血压的新靶点:血管紧张素原[J].心血管病学进展,2021,(7):619-624.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.011]
 WANG Yongchun,GAO Hongmei,LIU Fang,et al.A New Target for Treatment of Hypertension: Angiotensinogen[J].Advances in Cardiovascular Diseases,2021,(7):619-624.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.011]
点击复制

治疗高血压的新靶点:血管紧张素原()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年7期
页码:
619-624
栏目:
出版日期:
2021-07-25

文章信息/Info

Title:
A New Target for Treatment of Hypertension: Angiotensinogen
作者:
王咏春1 高红梅23 刘芳2 朱希瑶1 徐茂青1
(1.山东中医药大学,山东 济南250000;2.山东中医药大学第二附属医院心内科,山东 济南250000;3.山东中医药大学博士后流动站,山东 济南250000)
Author(s):
WANG Yongchun1GAO Hongmei 23LIU Fang2ZHU Xiyao1XU Maoqing1
Shandong University of Traditional Chinese Medicine,Jinan 250000,Shandong,China; 2. Department of Cardiology,The Second Affiliated Hospital,Shandong University of Traditional Chinese Medicine,Jinan 250000,Shandong,China;3. Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine,Jinan 250000,Shandong,China)
关键词:
血管紧张素原RNA干扰小干扰RNA肾素-血管紧张素系统阻断剂
Keywords:
AngiotensinogenRNA interferenceSmall interfering RNARenin-angiotensin system blocker
DOI:
10.16806/j.cnki.issn.1004-3934.2021.07.011
摘要:
高血压是全球患病率最高的非感染性慢性病,也是许多心血管疾病共有的危险因素。大多数高血压病例不可治愈,终生服药给社会和患者带来沉重负担。肾素-血管紧张素系统在高血压、冠心病和心力衰竭等心血管疾病的发生和发展中扮演着重要角色,其中血管紧张素原是肾素-血管紧张素系统的上游分子,近年来的研究表明血管紧张素原有望成为治疗高血压的理想靶点。RNA干扰技术是前景良好的基因沉默技术,具有精确地调控基因表达的潜力,将其用于靶向致病基因具有重要的临床意义。现汇总近年来血管紧张素原与高血压的有关研究,简要概述RNA干扰的原理,以及靶向血管紧张素原基因的小干扰RNA用于降压治疗的进展。
Abstract:
Hypertension is a non infectious chronic disease with the highest prevalence rate in the world. It is also a common risk factor for many cardiovascular diseases. Most of hypertension is incurable, life-long medication brings heavy burden to society and patients. Renin-angiotensin system plays an important role in the occurrence and development of cardiovascular diseases such as hypertension,coronary heart disease,heart failure and so on. Among them,angiotensinogen is the upstream molecule of renin-angiotensin system. Recent studies have shown that angiotensinogen is expected to become an ideal target for the treatment of hypertension. RNA interference is a promising gene silencing technology,which has the potential to precisely regulate gene expression. It has important clinical significance to target pathogenic genes. In this paper, we ____________________________基金项目:山东省中医药科技发展计划项目(2019-02412019WS560)E-mail:gaohongmeia@163.comsummarize the recent studies on angiotensinogen and hypertension, and summarize the principle of RNA interference and the progress of small interfering RNA targeting angiotensinogen gene in antihypertensive therapy

参考文献/References:

[1] Wang Z, Chen Z, Zhang L, et al. Status of hypertension in China:results from the China Hypertension Survey,2012—2015[J]. Circulation,2018,137(22):2344-2356.
[2] 方湘,潘小蓉,程毅松,等.《中青年高血压管理中国专家共识》解读[J]. 中国循证医学杂志,2020,20(7):753-758.
[3] Kitada K, Kobori H, Nishiyama A Liver-specific angiotensinogen suppression:an old yet novel target for blood pressure control through RAS inhibition?[J]. Hypertens Res,2014,37(5):393-394.
[4] Xu Y, Rong J, Zhang Z. The emerging role of angiotensinogen in cardiovascular diseases[J]. J Cell Physiol,2021,236(1):68-78.
[5] Zimmermann TS, Karsten V, Chan A, et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate[J]. Mol Ther,2017,25(1):71-78.
[6] Arendse LB, Danser AHJ, Poglitsch M, et al. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure[J]. Pharmacol Rev,2019,71(4):539-570.
[7] Li HM, Du ZR, Zhang L, et al. The relationship between angiotensinogen gene polymorphisms and essential hypertension in a Northern Han Chinese population[J]. Angiology,2014,65(7):614-619.
[8] 陈娟,董昌武.原发性高血压与血管紧张素原基因多态性的相关性研究进展[J]. 黑龙江医药,201427(1):70-73.
[9] Heianza Y, Qi L. Impact of genes and environment on obesity and cardiovascular disease[J]. Endocrinology,2019,160(1):81-100.
[10] Kobori H, Urushihara M. Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease[J]. Pflugers Arch,2013,465(1):3-12.
[11] Tao XR, Rong JB, Lu HS, et al. Angiotensinogen in hepatocytes contributes to Western diet-induced liver steatosis[J]. J Lipid Res,2019,60(12):1983-1995.
[12] Raghunathan S, Patel BM. Therapeutic implications of small interfering RNA in cardiovascular diseases[J]. Fundam Clin Pharmacol,2013,27(1):1-20.
[13] Springer AD, Dowdy SF. GalNAc-siRNA conjugates:leading the way for delivery of RNAi therapeutics[J]. Nucleic Acid Ther,2018,28(3):109-118.
[14] Ren LW, Mirabito Colafella KM, Bovée DM, et al. Targeting angiotensinogen with RNA-based therapeutics[J]. Curr Opin Nephrol Hypertens,2020,29(2):180-189.
[15] Lee K, Jang B, Lee YR, et al. The cutting-edge technologies of siRNA delivery and their application in clinical trials[J]. Arch Pharm Res,2018,41(9):867-874.
[16] Matsuda S, Kristofer K, Nair JK, et al. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes[J]. ACS Chem Biol,2015,10(5):1181-1187.
[17] Korin E, Bejerano T, Cohen S. GalNAc bio-functionalization of nanoparticles assembled by electrostatic interactions improves siRNA targeting to the liver[J]. J Control Release,2017,266:310-320.
[18] Ye F, Wang Y, Wu C, et al. Angiotensinogen and megalin interactions contribute to atherosclerosis-brief report[J]. Arterioscler Thromb Vasc Biol,2019,39(2):150-155.
[19] Mirabito Colafella KM, Bovée DM, Danser AHJ. The renin-angiotensin-aldosterone system and its therapeutic targets[J]. Exp Eye Res,2019,186:107680.
[20] Olearczyk J, Gao S, Eybye M, et al. Targeting of hepatic angiotensinogen using chemically modified siRNAs results in significant and sustained blood pressure lowering in a rat model of hypertension[J]. Hypertens Res,2014,37(5):405-412.
[21] Uijl E, Mirabito Colafella KM, Sun Y, et al. Strong and sustained antihypertensive effect of small interfering RNA targeting liver angiotensinogen[J]. Hypertension,2019,73(6):1249-1257.
[22] Mullick AE, Yeh ST, Graham MJ, et al. Blood pressure lowering and safety improvements with liver angiotensinogen inhibition in models of hypertension and kidney injury[J]. Hypertension,2017,70(3):566-576.
[23] Yiannikouris F, Wang Y, Shoemaker R, et al. Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice[J]. Hypertension,2015,66(4):836-842.
[24] Matsusaka T, Niimura F, Shimizu A, et al. Liver angiotensinogen is the primary source of renal angiotensinⅡ[J]. J Am Soc Nephrol,2012,23(7):1181-1189.
[25] Carey RM. The intrarenal renin-angiotensin and dopaminergic systems:control of renal sodium excretion and blood pressure[J]. Hypertension,2013,61(3):673-680.
[26] Lu H, Cassis LA, Kooi CW, et al. Structure and functions of angiotensinogen[J]. Hypertens Res,2016,39(7):492-500.
[27] Haase N, Foster DJ, Cunningham MW, et al. RNA interference therapeutics targeting angiotensinogen ameliorate preeclamptic phenotype in rodent models[J]. J Clin Invest,2020,130(6):2928-2942.
[28] Zlatev I, Castoreno A,Brown CR, et al.Reversal of siRNA-mediated gene silencing in vivo[J]. Nat Biotechnol,2018,36(6):509-511.
[29] Mann JFE, B?hm M. Dual renin-angiotensin system blockade and outcome benefits in hypertension:a narrative review[J]. Curr Opin Cardiol,2015,30(4):373-377.

更新日期/Last Update: 2021-09-10