[1]刘镏 王昊 王连生.泛素化在心肌梗死后的心肌保护与促再生作用[J].心血管病学进展,2021,(8):702-706.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.008]
 LIU LiuWANG HaoWANG Liansheng.Positive Role of Ubiquitination in Cardiomyocyte Protection and Endogenous Regeneration after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2021,(8):702-706.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.008]
点击复制

泛素化在心肌梗死后的心肌保护与促再生作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年8期
页码:
702-706
栏目:
病例报告
出版日期:
2021-08-25

文章信息/Info

Title:
Positive Role of Ubiquitination in Cardiomyocyte Protection and Endogenous Regeneration after Myocardial Infarction
作者:
刘镏 王昊 王连生
(南京医科大学第一附属医院心内科,江苏 南京210000)
Author(s):
LIU LiuWANG HaoWANG Liansheng
(Department of Cardiology,The First Affiliated Hospital of Nanjing Medical University,Nanjing 210000,Jiangsu,China)
关键词:
泛素化心肌梗死心肌保护心肌再生
Keywords:
UbiquitinationMyocardial infarctionCardiomyocyte protectionRegeneration
DOI:
10.16806/j.cnki.issn.1004-3934.2021.08.008
摘要:
泛素化是一种作用范围广泛的蛋白质翻译后修饰,参与心肌梗死等疾病的发生和发展。近期的研究表明,泛素化对缺血再灌注引起的心肌细胞损伤有保护作用,同时还可参与心肌细胞的内源性再生过程,因此可能为心肌梗死的治疗提供新的方向。现综述泛素化的保护作用的机制,论述在此过程中涉及的因子和作用机制。
Abstract:
Ubiquitination is a post-translational modification of protein with a wide range of effects,which is involved in the occurrence and development of diseases such as myocardial infarction. Recent studies have shown that ubiquitination has a protective effect on myocardial cell damage caused by ischemia/reperfusion,and it can also participate in the endogenous regeneration process of myocardial cells,so it may provide a new direction for the treatment of myocardial infarction. This article reviews the protective mechanism of ubiquitination and discusses the factors and mechanisms involved in this process.

参考文献/References:

[1]Liu S,Li Y,Zeng X,et al. Burden of cardiovascular diseases in China,1990—2016:findings from the 2016 global burden of disease study[J]. JAMA Cardiol,2019,4(4):342-352.

[2]Soler-Botija C,Forcales SV,Bayés Genís A. Spotlight on epigenetic reprogramming in cardiac regeneration[J]. Semin Cell Dev Biol,2020,97:26-37.

[3]Wang F,Lerman A,Herrmann J. Dysfunction of the ubiquitin-proteasome system in atherosclerotic cardiovascular disease[J]. Am J Cardiovasc Dis,2015,5(1):83-100.

[4]Willis MS,Patterson C. Proteotoxicity and cardiac dysfunction--Alzheimers disease of the heart?[J]. N Engl J Med,2013,368(5):455-464.

[5]杜冲 ,韦天文,李亚飞,等. 心肌梗死后心肌细胞内源性再生的研究进展[J]. 心血管病学进展,2020,41(4):395-399.

[6] Goldstein G,Scheid M,Hammerling U,et al. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells[J]. Proc Natl Acad Sci U S A,1975,72(1):11-15.

[7] Raiborg C,Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins[J]. Nature,2009,458(7237):445-452.

[8] Bergink S,Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair[J]. Nature,2009,458(7237):461-467.

[9] Hutchins AP,Liu S,Diez D,et al. The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes[J]. Mol Biol Evol,2013,30(5):1172-1187.

[10]Gareau JR,Lima CD. The SUMO pathway:emerging mechanisms that shape specificity,conjugation and recognition[J]. Nat Rev Mol Cell Biol,2010,11(12):861-871.

[11]Scofield SLC,Dalal S,Lim KA,et al. Exogenous ubiquitin reduces inflammatory response and preserves myocardial function 3 days post-ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol,2019,316(3):H617-H628.

[12]Dalal S,Daniels CR,Li Y,et al. Exogenous ubiquitin attenuates hypoxia/reoxygenation-induced cardiac myocyte apoptosis via the involvement of CXCR4 and modulation of mitochondrial homeostasis[J]. Biochem Cell Biol,2020,98(4):492-501.

[13]Chen X,Wang C,Yang P,et al. Ube2s-stabilized beta-catenin protects against myocardial ischemia/reperfusion injury by activating HIF-1alpha signaling[J]. Aging (Albany NY),2020,12(7):5716-5732.

[14]Huang C,Andres AM,Ratliff EP,et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1[J]. PLoS One,2011,6(6):e20975.

[15]Sun T,Ding W,Xu T,et al. Parkin regulates programmed necrosis and myocardial ischemia/reperfusion injury by targeting Cyclophilin-D[J]. Antioxid Redox Signal,2019,31(16):1177-1193.

[16]Toth A,Nickson P,Qin LL,et al. Differential regulation of cardiomyocyte survival and hypertrophy by MDM2,an E3 ubiquitin ligase[J]. J Biol Chem,2006,281(6):3679-3689.

[17]Li X,Ni L,Wang W,et al. LncRNA Fendrr inhibits hypoxia/reoxygenation‐induced cardiomyocyte apoptosis by downregulating p53 expression[J]. J Pharm Pharmacol,2020,72(9):1211-1220.

[18]Li H,Du J,Fan Y,et al. The ubiquitin ligase MuRF1 protects against cardiac ischemia/reperfusion injury by its proteasome-dependent degradation of phospho-c-Jun[J]. Am J Pathol,2011,178(3):1043-1058.

[19]Tan J,Shen J,Zhu H,et al. miR-378a-3p inhibits ischemia/reperfusion-induced apoptosis in H9C2 cardiomyocytes by targeting TRIM55 via the DUSP1-JNK1/2 signaling pathway[J]. Aging (Albany NY),2020,12(10):8939-8952.

[20]Ye N,Zhang N,Zhang Y,et al. Cul4a as a new interaction protein of PARP1 inhibits oxidative stress-induced H9c2 cell apoptosis[J]. Oxid Med Cell Longev,2019,2019:4273261.

[21]Chen Z,Su X,Shen Y,et al. MiR322 mediates cardioprotection against ischemia/reperfusion injury via FBXW7/notch pathway[J]. J Mol Cell Cardiol,2019,133:67-74.

[22]Hu W,Zhang P,Gu J,et al. NEDD4-1 protects against ischaemia/reperfusion-induced cardiomyocyte apoptosis via the PI3K/Akt pathway[J]. Apoptosis,2017,22(3):437-448.

[23]Li J,Horak KM,Su H,et al. Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice[J]. J Clin Invest,2011,121(9):3689-3700.

[24]Dang M,Zeng X,Chen B,et al. Soluble receptor for advance glycation end-products inhibits ischemia/reperfusion-induced myocardial autophagy via the STAT3 pathway[J]. Free Radic Biol Med,2019,130:107-119.

[25]Guo C,Jiang X,Zeng X,et al. Soluble receptor for advanced glycation end-products protects against ischemia/reperfusion-induced myocardial apoptosis via regulating the ubiquitin proteasome system[J]. Free Radic Biol Med,2016,94:17-26.

[26]Hu C,Tian Y,Xu H,et al. Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury[J]. J Clin Invest,2018,128(12):5294-5306.

[27]Peng X,Shao J,Shen Y,et al. FAT10 protects cardiac myocytes against apoptosis[J]. J Mol Cell Cardiol,2013,59:1-10.

[28]Zhang K,Chen L,Zhang Z,et al. Ubiquitin-like protein FAT10:a potential cardioprotective factor and novel therapeutic target in cancer[J]. Clin Chim Acta,2020,510:802-811.

[29]Bian X,Xu J,Zhao H,et al. Zinc-induced SUMOylation of dynamin-related protein 1 protects the heart against ischemia-reperfusion injury[J]. Oxid Med Cell Longev,2019,2019:1232146.

[30]Du Y,Liu P,Xu T,et al. Luteolin modulates SERCA2a leading to attenuation of myocardial ischemia/ reperfusion injury via sumoylation at lysine 585 in mice[J]. Cell Physiol Biochem,2018,45(3):883-898.

[31]Xie B,Liu X,Yang J,et al. PIAS1 protects against myocardial ischemia-reperfusion injury by stimulating PPARγSUMOylation[J]. BMC Cell Biol,2018,19(1):24.

[32]Lu L,Ma J,Tang J,et al. Irisin attenuates myocardial ischemia/reperfusion-induced cardiac dysfunction by regulating ER-mitochondria interaction through a mitochondrial ubiquitin ligase-dependent mechanism[J]. Clin Transl Med,2020,10(5):e166.

[33]Porrello ER,Mahmoud AI,Simpson E,et al. Transient regenerative potential of the neonatal mouse heart[J]. Science,2011,331(6020):1078-1080.

[34]Fan Y,Cheng Y,Li Y,et al. Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of Checkpoint Kinase 1 via Activating Mammalian Target of Rapamycin C1/Ribosomal Protein S6 Kinase b-1 Pathway[J]. Circulation,2020,141(19):1554-1569.

[35]Tamamori-Adachi M,Hayashida K,Nobori K,et al. Down-regulation of p27Kip1 Promotes Cell Proliferation of Rat Neonatal Cardiomyocytes Induced by Nuclear Expression of Cyclin D1 and CDK4[J]. J Biol Chem,2004,279(48):50429-50436.

[36]Tamamori-Adachi M,Takagi H,Hashimoto K,et al. Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and Skp2 ubiquitin ligase[J]. Cardiovasc Res,2008,80(2):181-190.

[37]Li B,Li M,Li X,et al. Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation[J]. Aging (Albany NY),2019,11(24):12546-12567.

[38]Huang S,Li X,Zheng H,et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice[J]. Circulation,2019,139(25):2857-2876.

[39]Zou J,Ma W,Li J,et al. Neddylation mediates ventricular chamber maturation through repression of Hippo signaling[J]. Proc Natl Acad Sci U S A,2018,115(17):E4101-E4110.

[40]Torrini C,Cubero RJ,Dirkx E,et al. Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation[J]. Cell Rep,2019,27(9):2759-2771.

[41]Zhao C,Shen Q. Overexpression of small ubiquitinlike modifier 2 ameliorates high glucoseinduced reductions in cardiomyocyte proliferation via the transforming growth factorbeta/Smad pathway[J]. Mol Med Rep,2018,18(6):4877-4885.

[42]Dong W,Xie F,Chen X,et al. Inhibition of Smurf2 translation by miR-322/503 protects from ischemia-reperfusion injury by modulating EZH2/Akt/GSK3β signaling[J]. Am J Physiol Cell Physiol,2019,317(2):C253-C261.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(8):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(8):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(8):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(8):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(8):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(8):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(8):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金面上项目(81770361) 通信作者:王连生,E-mail:drlswang@njmu.edu.cn 收稿日期:2020-12-08
更新日期/Last Update: 2021-09-26