参考文献/References:
[1] Jia G,Whaley-Connell A,Sowers JR. Diabetic cardiomyopathy:a hyperglycaemia- and insulin-resistance-i nduced heart disease[J]. Diabetologia,2018,61(1):21-28.
[2] Kar S,Kambis TN,Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy[J]. Am J Physiol Heart Circ Physiol,2019,316(6):H1237-H1252.
[3] Murtaza G,Virk HUIH,Khalid M,et al. Diabetic cardiomyopathy—A comprehensive updated review[J]. Prog Cardiovasc Dis,2019,62(4):315-326.
[4] 易登良,曾奇虎,范忠才.外源性硫化氢对糖尿病心肌病保护作用机制的研究进展[J].山东医药,2018,58(46):90-92.
[5] Kolluru GK,Shen X,Kevil CG. Reactive sulfur species:a new redox player in cardiovascular pathophysiology[J]. Arterioscler Thromb Vasc Biol,2020,40(4):874-884.
[6] 张书虎,李静,马兰,等. 硫化氢代谢与神经保护作用[J]. 中华老年多器官疾病杂志,2019,18(4):308-312.
[7] 李敏霞,陈亚红. 硫化氢在肺血管重塑中的调节机制及信号通路[J]. 生理科学进展,2018,49(1):74-78.
[8] 李超,王岩. 硫化氢在糖尿病肾病中的保护作用及机制研究进展[J].检验医学与临床,2018,15(22):3466-3470.
[9] Gheibi S,Jeddi S,Kashfi K,et al. Regulation of vascular tone homeostasis by NO and HS:implications in hypertension[J]. Biochem Pharmacol,2018,149:42-59.
[10] 张源洲,席雨鑫,温馨,等. 硫化氢对衰老缺血心肌细胞保护作用的研究进展[J].基础医学与临床,2019,39(2):252-255.
[11] Barton M,Meyer MR. Hurry up:how hydrogen sulfide protects against atherosclerosis[J]. Circulation,2019,139(1):115-118.
[12] Zhou X,An G,Lu X. Hydrogen sulfide attenuates the development of diabetic cardiomyopathy[J]. Clin Sci(Lond),2015,128(5):325-335.
[13] Qian LL,Liu XY,Chai Q,et al. Hydrogen sulfide in diabetic complications:focus on molecular mechanisms[J]. Endocr Metab Immune Disord Drug Targets,2018,18(5):470-476.
[14] Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease[J]. Circ Res,2020,126(11):1501-1525.
[15] Corsello T,Komaravelli N,Casola A. Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance[J]. Antioxidants(Basel),2018,7(10):129.
[16] Meng G,Liu J,Liu S,et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner[J]. Br J Pharmacol,2018,175(8):1126-1145.
[17] Long J,Liu M,Liu S,et al. H2S attenuates the myocardial fibrosis in diabetic rats through modulating PKC-ERK1/2MAPK signaling pathway[J]. Technol Health Care,2019,27(S1):307-316.
[18] Liu M,Li Y,Liang B,et al. Hydrogen sulfide attenuates myocardial fibrosis in diabetic rats through the JAK/STAT signaling pathway[J]. Int J Mol Med,2018,41(4):1867-1876.
[19] Jia Q,Mehmood S,Liu X,et al. Hydrogen sulfide mitigates myocardial inflammation by inhibiting nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome activation in diabetic rats[J]. Exp Biol Med (Maywood),2020,245(3):221-230.
[20] Kuo WW,Wang WJ,Tsai CY,et al. Diallyl trisufide(DATS)suppresses high glucose-induced cardiomyocyte apoptosis by inhibiting JNK/NFκB signaling via attenuating ROS generation[J]. Int J Cardiol,2013,168(1):270-280.
[21] Tran BH,Yu Y,Chang L,et al. A novel liposomal S-propargyl-cysteine:a sustained release of hydrogen sulfide reducing myocardial fibrosis via TGF-β1/Smad pathway[J]. Int J Nanomedicine,2019,14:10061-10077.
[22] Zhao HL,Wu BQ,Luo Y,et al. Exogenous hydrogen sulfide ameliorates high glucose-induced myocardial injury & inflammation via the CIRP-MAPK signaling pathway in H9c2 cardiac cells[J]. Life Sci,2018,208:315-324.
[23] Sciarretta S,Maejima Y,Zablocki D,et al. The role of autophagy in the heart[J]. Annu Rev Physiol,2018,80:1-26.
[24] Xu X,Kobayashi S,Chen K,et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes[J]. J Biol Chem,2013,288(25):18077-18092.
[25] Wang B,Yang Q,Sun Y,et al. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice[J]. J Cell Mol Med,2014,18(8):1599-1611.
[26] Yang F,Zhang L,Gao Z,et al. Exogenous H2S protects against diabetic cardiomyopathy by activating autophagy via the AMPK/mTOR pathway[J]. Cell Physiol Biochem,2017,43(3):1168-1187.
[27] Luo W, Gui DD, Yan BJ,et al. Hydrogen sulfide switch phenomenon regulating autophagy in cardiovascular diseases[J]. Cardiovasc Drugs Ther,2020,34(1):113-121.
[28] Wu J,Tian Z,Sun Y,et al. Exogenous HS facilitating ubiquitin aggregates clearance via autophagy attenuates type 2 diabetes-induced cardiomyopathy[J]. Cell Death Dis,2017,8(8):e2992.
[29] Hetz C,Zhang K,Kaufman RJ. Mechanisms,regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol,2020,21(8):421-438.
[30] Wang H,Shi X,Qiu M,et al. Hydrogen sulfide plays an important protective role through influencing endoplasmic reticulum stress in diseases[J]. Int J Biol Sci,2020,16(2):264-271.
相似文献/References:
[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes
of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(1):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(1):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in
Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(1):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(1):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(1):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[6]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(1):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[7]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(1):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[8]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(1):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[9]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(1):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
[10]王一硕 罗皓文 王晨旭 孙路轩 阿如汗 张茵 常盼.线粒体动力学在糖尿病心肌病中的研究进展[J].心血管病学进展,2023,(12):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]
WANG Yishuo LUO Haowen WANG Chenxu SUN Luxuan AruhanZHANG Yin CHANG Pan.Mitochondrial Dynamics in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(1):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]