[1]王雪梅 刘芬 曹莹 邢远 汪洁英 潘涛.HIF-1α介导线粒体功能调控糖尿病心肌缺血再灌注损伤的作用机制研究[J].心血管病学进展,2020,(10):1085.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.021]
 WANG Xuemei,LIU Fen,CAO Ying,et al.HIF-1α Mediates the Regulation of Mitochondrial Function on Diabetic Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(10):1085.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.021]
点击复制

HIF-1α介导线粒体功能调控糖尿病心肌缺血再灌注损伤的作用机制研究()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年10期
页码:
1085
栏目:
论著
出版日期:
2020-10-25

文章信息/Info

Title:
HIF-1α Mediates the Regulation of Mitochondrial Function on Diabetic Myocardial Ischemia Reperfusion Injury
作者:
王雪梅12 刘芬2 曹莹1 邢远1 汪洁英1 潘涛1
 (1.西安医学院公共卫生学院,陕西 西安 710021;2.新疆医科大学第一附属医院动物疾病模型研究重点实验室,新疆 乌鲁木齐 830054)
Author(s):
WANG Xuemei12 LIU Fen2 CAO Ying1 XING Yuan1WANG Jieying1 PAN Tao1
(1.Department of public health,Xi’an Medical University,Xi’an 710021,Shaanxi,China; 2.Xinjiang Key Laboratory of Medical animal Model Research,The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830054,Xinjiang,China)
关键词:
糖尿病心肌缺血再灌注低氧诱导因子1α过氧化物酶体增殖物激活受体γ辅助激活因子1α
Keywords:
Diabetic myocardium Ischemia/reperfusion Hypoxia-inducible factors 1α peroxisome proliferator activated receptor γ coactivator 1α
DOI:
10.16806/j.cnki.issn.1004-3934.2020.10.021
摘要:
目的 研究低氧诱导因子1α(HIF-1α)对高糖作用下缺血再灌注(IR)损伤的心肌细胞凋亡和氧化应激,及其信号通路下游因子的调控作用。方法 二甲基已二酰基甘氨酸激活HIF-1α对高糖作用下IR心肌细胞损伤的干预。实验分四组:对照组(细胞常规培养)、高糖+缺氧复氧组(25 mmol/L葡萄糖的DMEM培养基培养24 h,缺氧2 h,复氧8 h)、HIF-1α处理组(高糖,缺氧加复氧,缺氧前3 h用100 ?mol/L的二甲基已二酰基甘氨酸处理)、二甲基亚砜(DMSO)对照组(高糖,缺氧加复氧,缺氧前3 h用100 ?mol/L的DMSO处理)。流式细胞术测定细胞凋亡率,CCK-8法分析细胞活性;ELISA法检测细胞培养上清液中超氧化物歧化酶活性和丙二醛的表达;ATP含量试剂盒检测各组细胞ATP含量;Western Blot法检测过氧化物酶体增殖物激活受体γ辅助激活因子1α(PGC-1α)、核呼吸因子1,以及能量代谢相关的p-AMPK、AMPK蛋白表达,HIF-1α核蛋白表达。结果 高糖合并IR损伤增加心肌细胞的凋亡(P<0.01),降低心肌细胞活力(P<0.01),HIF-1α表达激活抑制心肌细胞的凋亡(P<0.05)和活力降低(P<0.05)。高糖合并IR损伤增加心肌细胞的氧化应激水平,HIF-1α表达激活抑制心肌细胞的氧化应激。和DMSO对照组相比,HIF-1α处理组的超氧化物歧化酶的表达显著增加[(11.56±0.72)U/mL vs(7.79±0.90)U/mL,P<0.05],丙二醛的表达显著降低[(0.69±0.07)nmol/mL vs(0.96±0.11)nmol/mL,P<0.001]。高糖+缺氧复氧的应激降低了细胞的ATP含量,HIF-1α表达激活减轻了这种损伤。和DMSO对照组相比,HIF-1α处理组的ATP含量显著增加[(5.41±0.23)μmol/g vs(3.10±0.42)μmol/g,P<0.05]。低氧条件下,HIF-1α核蛋白表达增加(P<0.001),低氧激活p-AMPK蛋白表达(P<0.01),线粒体氧化磷酸化的激活因子PGC-1α(P<0.01)、转录因子核呼吸因子1(P<0.01)的表达均显著上调。和DMSO组相比,HIF-1α处理组HIF-1α的表达显著增加(P<0.05)、PGC-1α表达显著增加(P<0.05)。结论 HIF-1α在糖尿病心肌IR损伤中通过提高PGC-1α的表达,提高线粒体的能量代谢水平,降低心肌的氧化应激损伤和凋亡。
Abstract:
Objective To study the effects of hypoxia inducible factor-1 α (HIF-1 α) on apoptosis and oxidative stress of myocardial cells induced by ischemia reperfusion injury under high glucose condition, and the downstream factors of the signaling pathway. Methods The intervention of HIF-1α was active d by d imethyloxallyl glycine (DMOG) on myocardial cell injury induced by high glucose and ischemia reperfusion. The experiment was divided into four groups:control group (conventional cell culture),high glucose+hypoxia reoxygenation group (DMEM medium culture of 25 mmol/L glucose for 24 h,hypoxia for 2 h,reoxygenation for 8 h),HIF-1α treatment group (high glucose,hypoxia reoxygenation,DMOG treatment of 100 μmol/L for 3 h before hypoxia), Dimethyl sulfoxide (DMSO) control group (high glucose ,hypoxia reoxygenation,DMSO treatment of 100 μmol/L for 3 h before hypoxia). Flow cytometry was used to detect the apoptosis rate,CCK-8 was used to analyze the cell activity,ELISA was used to detect the activity of SOD and the expression of MDA in the supernatant of cell culture, ATP content kit was used to detect the content of ATP in each group,Western Blot detected the protein expression of mitochondrial oxidative phosphorylation activator PGC-1α, transcription factor NRF-1, energy metabolism related factor AMPK,p-AMPK and HIF-1α nuclear proteins.Results The high glucose with ischemia reperfusion injury increase d the apoptosis of cardiomyocytes (P<0.01),and decreased the viability of cardiomyocytes (P<0.01). Activation of HIF-1α expression inhibited the apoptosis of cardiomyocytes(P < 0.05) and the decrease of the viability of cardiomyocytes ( P < 0.05) . The high glucose with ischemia reperfusion injury increased the oxidative stress of cardiomyocytes,and the activation of HIF-1α inhibited the oxidative stress of cardiomyocytes. Compared with DMSO control group ,the activity of SOD in HIF-1α treatment group increased significantly [(11.56±0.72)U/mL vs ( 7.79±0.90)U/mL,P<0.05],and the expression of MDA decreased significantly[(0.69±0.07)nmol/mL vs ( 0.96±0.11)nmol/mL,P<0.001]. The stress of high glucose+hypoxia reoxygenation reduced the ATP content of cells ,and HIF-1α relieved the injury. Compared with DMSO control group,ATP content of HIF-1α treatment group increased significantly[(5.41±0.23)μmol/g vs ( 3.10±0.42)μmol/g,P<0.05]. Under hypoxia,the expression of HIF-1α nuclear protein increased (P<0.001),the expression of p-AMPK protein increased (P<0.01),the expression of mitochondrial oxidative phosphorylation activator PGC-1α increased (P<0.01),and transcription factor NRF-1 increased (P<0.01). Compared with DMSO group,the expression of HIF-1α and PGC-1α in HIF-1α treatment group increased significantly (P<0.05).Conclusion HIF-1α can increase the expression of PGC-1α,improve the energy metabolism level of mitochondria,and reduce the oxidative stress injury and apoptosis of myocardium

参考文献/References:


[1] Hall TM,Gordon C,Roy R,et al. Delayed coronary reperfusion is in effective at impeding the dynamic increase in cardiac efferent sympathetic nerve activity following myocardial ischemia[J]. Basic Res Cardiol,2016,111(3):3.
[2] Myat A,Redwood SR,Gersh BJ,et al. Diabetes,incretin hormones and cardioprotection[J]. Heart,2014,100(19):1550-1561.
[3] 陈伟伟,高润霖,刘力生,等.《中国心血管病报告2017》概要[J].中国循环杂志,2018,33(1):1-8.

[4] Liu L,Simon B,Shi J,et al. Impact of diabetes mellitus on risk of cardiovascular disease and all-cause mortality:evidence on health outcomes and antidiabetic treatment in United States adults[J]. World J Diabetes,2016,7(18):449-461.
[5] Wang Y,Wang W,Wang N,et al. Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice[J]. Arterioscler Thromb Vasc Biol,2017,37(8):e99-e107.

[6] Kadlec AO,Chabowski DS,Ait-Aissa K,et al. Role of PGC-1α in vascular regulation:implications for atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2016,36(8):1467-1474.

[7] Ping Z,Zhang LF,Cui YJ,et al. The Protective effects of salidroside from exhaustive exercise-induced heart injury by enhancing the PGC-1α-NRF1/NRF2 pathway and mitochondrial respiratory function in rats[J]. Oxid Med Cell Longev,2015,2015:876825.

[8] Thiele RH. Subcellular energetics and metabolism:potential therapeutic applications[J]. Anesth Analg,2017,124(6):1872-1885.
[9] Thangarajah H,Vial IN,Grogan RH,et al. HIF-1αlpha dysfunction in diabetes[J]. Cell Cycle,2010,9(1):75-79.
[10] Bento CF,Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes[J]. Diabetologia,2011,54(8):1946-1956.
[11] Miki T,Itoh T,Sunaga D,et al. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning[J]. Cardiovascular diabetology,2012,11:67.
[12]Drenger B,Ostrovsky IA,Barak M,et al. Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart:phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinasemediated inhibition[J]. Anesthesiology,2011,114(6):1364-1372.

[13] Badalzadeh R,Mokhtari B,Yavari R. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus[J]. ?J Physiol Sci,2015,65(3):201-215.
[14] Cai Z,Luo W,Zhan H,et al. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart[J]. Proc Natl Acad Sci U S A,2013,110(43):17462-17467.

[15] Yang L,Xie P,Wu J,et al. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1[J]. Am J Transl Res,2016,8(10):4415-4424.
[16] Yu J,Maimaitili Y,Xie P et al. High glucose concentration abrogates sevoflurane postconditioning cardioprotection by advancing mitochondrial fission but dynamin-related protein 1 inhibitor restores these effects[J]. Acta Physiol (Oxf),2017,220(1):83-98.

[17] Wu J,Yang L,Xie P,et al. Cobalt chloride upregulates impaired HIF-1α expression to restore sevoflurane postconditioning dependent myocardial protection in diabetic rats[J].Front Physiol,2017,8:395.
[18] Xie P,Yang L,Talaiti A,et al. Deferoxamine-activated hypoxia- inducible factor-1 restores cardioprotective effects of sevoflurane postconditioning in diabetic rats[J],Acta Physiol (Oxf),2017,221(2):98-114.
[19] Semenza GL. Hypoxia-inducible factor 1 and cardiovascular disease[J]. Annu Rev Physiol,2014,76:39-56.

[20] Alers S,L?ffler AS,Wesselborg S,et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy:cross talk,shortcuts,and feedbacks[J]. Mol Cell Biol,2012,32(1):2-11.

[21] Xie Z,He C,Zou MH. AMP-activated protein kinase modulates cardiac autophagy in diabetic cardiomyopathy[J]. Autophagy,2011,7(10):1254-1255.
[22] Uguccioni G,Hood DA. The importance of PGC-1α in contractile activity-induced mitochondrial adaptations[J]. Am J Physiol Endocrinol Metab,2011,300(2):E361-E371.

[23] Shao D,Liu Y,Liu X,et al. PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha[J]. Mitochondrion,2010,10(5):516-527.

[24] Venditti P,Bari A,Di Stefano L,et al. Involvement of PGC-1,NRF-1,and NRF-2 in metabolic response by rat liver to hormonal and environmental signals[J]. Mol Cell Endocrinol,2009,305(1-2):22-29.

[25] Zhang Y,Wang C,Jin Y,et al. Activating the PGC-1α/TERT pathway by catalpol ameliorates atherosclerosis via modulating ROS production,DNA damage,and telomere function:implications on mitochondria and telomere link[J]. Oxid Med Cell Longev,2018:2876350.

[26] Song SB,Hwang ES. A Rise in ATP,ROS,and mitochondrial content upon glucose withdrawal correlates with a dysregulated mitochondria turnover mediated by the activation of the protein deacetylase SIRT1[J]. Cells,2018,8(1):11.

[27] Choi GE,Oh JY,Lee HJ,et al. Glucocorticoid-mediated ER-mitochondria contacts reduce AMPA receptor and mitochondria trafficking into cell terminus via microtubule destabilization[J]. Cell Death Dis,2018,9(11):1137.

[28] Hennuyer N,Duplan I,Paquet C,et al. The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia,enhances reverse cholesterol transport and decreases inflammation and atherosclerosis[J]. Atherosclerosis,2016,249:200-208.

相似文献/References:

[1]陈远洋 王志维.供体巨噬细胞在心脏移植中的研究进展[J].心血管病学进展,2022,(6):514.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.009]
 CHEN Yuanyang,WANG Zhiwei.Donor Macrophages in Heart Transplantation[J].Advances in Cardiovascular Diseases,2022,(10):514.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.009]
[2]庞自豪 贾青青 韩博文 张莉.药物调控哺乳动物雷帕霉素靶蛋白相关信号通路在缺血性心脏病中的研究进展[J].心血管病学进展,2024,(4):326.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.009]
 PANG Zihao,JIA Qingqing,HAN Bowen,et al.Research Progress In Drug Regulated mTOR Related Signaling Pathway?span>In Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2024,(10):326.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.009]

更新日期/Last Update: 2020-12-21