[1]阳文龙 邹松 崔凯军.心力衰竭基因治疗临床试验研究进展[J].心血管病学进展,2020,(6):586.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.007]
 YANG WenlongZOU SongCUI Kaijun.Gene Therapy for Heart Failure in Clinical Trials[J].Advances in Cardiovascular Diseases,2020,(6):586.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.007]
点击复制

心力衰竭基因治疗临床试验研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年6期
页码:
586
栏目:
综述
出版日期:
2020-06-25

文章信息/Info

Title:
Gene Therapy for Heart Failure in Clinical Trials
作者:
阳文龙1 邹松1 崔凯军12
(1.四川大学华西临床医学院,四川 成都 610041;2.四川大学华西医院心血管内科,四川 成都 610041)
Author(s):
YANG Wenlong1ZOU Song1CUI Kaijun12
(1.West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China; 2.Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China)
关键词:
心力衰竭基因治疗临床试验
Keywords:
Heart failure Gene therapy Clinical trial
DOI:
10.16806/j.cnki.issn.1004-3934.2020.06.007
摘要:
心力衰竭是一种影响人类健康与生活质量的慢性心脏疾病。由于药物治疗具有易产生耐药性,导致心律失常等并发症的缺点,心力衰竭的药物治疗效果对于患者远期情况改善并不理想。基因治疗具有较长期的改善患者心脏功能的作用因而可弥补药物治疗的不足。目前已进行临床研究的治疗心力衰竭的基因有肌浆网钙离子ATP酶基因、腺苷酸环化酶6基因、基质细胞衍生因子1基因,且均经过了Ⅱ期临床试验。在试验中三种基因显示出了较好的安全性,不同的基因其疗效不同。现介绍基因治疗心力衰竭的原理及临床试验进展,并讨论其研究结果。
Abstract:
Heart failure (HF) is a chronic heart disease which damages human health and lowers patients’ quality of life seriously. Drug therapy for HF cannot effectively enhance long-term outcomes of patients due to drug resistance and arrhythmia caused by drugs. Gene therapy can be effective to HF for a long time, which offsets the drawbacks of medications. Recently, genes used to treat HF are sarco-endoplasmic reticulum calcium ATPase, adenyl cyclase 6 and stromal cell-derived factor-1, which are already in clinical trials. PhaseⅡclinical trials of the genes mentioned above were already completed and met safety endpoints. However, the efficacy of these genes are different. In this review, we will explain rationales of genes treatment, describe their progress of clinical trials and discuss the results of these trials

参考文献/References:

[1] Moran AEForouzanfar MH,Roth GA,et al.The global burden of ischemic heart disease in 1990 and 2010:the Global Burden of Disease 2010 study[J].Circulation,2014,129(14):1493-1501.
[2] Go AS,Mozaffarian D,Roger VL,et al.Executive summary:heart disease and stroke statistics--2014 update:a report from the American Heart Association[J].Circulation,2014,129(3):399-410.
[3] 朱永翔李烽张耀庭等沙库巴曲缬沙坦在射血分数降低性心力衰竭患者治疗中的研究进展[J]心血管病学进展,2019,(9):1249-1252.
[4] Meyer MSchillinger W,Pieske B,et al.Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy[J].Circulation,1995,92(4):778-784.
[5] Kawase Y,Ly HQ,Prunier F,et al.Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure[J].J Am Coll Cardiol,2008,51(11):1112-1119.
[6] Brodde OE,Michel MC,Zerkowski HR.Signal transduction mechanisms controlling cardiac contractility and their alterations in chronic heart failure[J].Cardiovasc Res,1995,30(4):570-584.
[7] Tang T,Gao MH,Roth DM,et al.Adenylyl cyclase type Ⅵ corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy[J].Am J Physiol Heart Circ Physiol,2004,287(5):H1906-1912.
[8] Roth DM,Bayat H,Drumm JD,et al.Adenylyl cyclase increases survival in cardiomyopathy[J].Circulation,2002,105(16):1989-1994.
[9] Gao MH,Tang T,Guo T,et al.Adenylyl cyclase type Ⅵ gene transfer reduces phospholamban expression in cardiac myocytes via activating transcription factor 3[J].J Biol Chem,2004,279(37):38797-38802.
[10] Gao MH,Bayat H,Roth DM,et al.Controlled expression of cardiac-directed adenylylcyclase type VI provides increased contractile function[J].Cardiovasc Res,2002,56(2):197-204.
[11] Sundararaman S,Miller TJ,Pastore JM,et al.Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure[J].Gene Ther,2011,18(9):867-873.
[12] Yamaguchi J,Kusano KF,Masuo O,et al.Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization[J].Circulation,2003,107(9):1322-1328.
[13] Jaski BE,Jessup ML,Mancini DM,et al.Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial),a first-in-human phase 1/2 clinical trial[J].J Card Fail,2009,15(3):171-181.
[14] Jessup M,Greenberg B,Mancini D,et al.Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID):a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure[J].Circulation,2011,124(3):304-313.
[15] Zsebo K,Yaroshinsky A,Rudy JJ,et al.Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure:analysis of recurrent cardiovascular events and mortality[J].Circ Res,2014,114(1):101-108.
[16] Greenberg B,Yaroshinsky A,Zsebo KM,et al.Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure:the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b)[J].JACC Heart Fail,2014,2(1):84-92.
[17] Greenberg B,Butler J,Felker GM,et al.Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2):a randomised,multinational,double-blind,placebo-controlled,phase 2b trial[J].Lancet,2016,387(10024):1178-1186.
[18] Mingozzi F,Anguela XM,Pavani G,et al.Overcoming preexisting humoral immunity to AAV using capsid decoys[J].Sci Transl Med,2013,5(194):194ra192.
[19] Hammond HK,Penny WF,Traverse JH,et al.Intracoronary gene transfer of adenylyl cyclase 6 in patients with heart failure:a randomized clinical trial[J].JAMA Cardiol,2016,1(2):163-171.
[20] Penny WF,Henry TD,Watkins MW,et al.Design of a Phase 3 trial of intracoronary administration of human adenovirus 5 encoding human adenylyl cyclase type 6 (RT-100) gene transfer in patients with heart failure with reduced left ventricular ejection fraction:The FLOURISH Clinical Trial[J].Am Heart J,2018,201:111-116.
[21] Penn MS,Mendelsohn FO,Schaer GL,et al.An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure[J].Circ Res,2013,112(5):816-825.
[22] Chung ES,Miller L,Patel AN,et al.Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients:the STOP-HF randomized Phase Ⅱ trial[J].Eur Heart J,2015,36(33):2228-2238.
[23] Watanabe S,Ishikawa K,Fish K,et al.Protein phosphatase inhibitor-1 gene therapy in a swine model of nonischemic heart failure[J].J Am Coll Cardiol,2017,70(14):1744-1756.
[24] Amoasii L,Hildyard JCW,Li H,et al.Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy[J].Science,2018,362(6410):86-91.
[25] Gabisonia K,Prosdocimo G,Aquaro GD,et al.MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs[J].Nature,2019,569(7756):418-422.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(6):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(6):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(6):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(6):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(6):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(6):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(6):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(6):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(6):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

更新日期/Last Update: 2020-09-21