[1]高可 杨蕾 姚新叶 郑小璞.射血分数保留性心力衰竭动物模型的研究进展[J].心血管病学进展,2020,(8):834-838.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.013]
 GAO Ke,YANG Lei,YAO Xinye,et al.Advances in Animal Models ofHeart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2020,(8):834-838.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.013]
点击复制

射血分数保留性心力衰竭动物模型的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年8期
页码:
834-838
栏目:
综述
出版日期:
2020-08-25

文章信息/Info

Title:
Advances in Animal Models ofHeart Failure with Preserved Ejection Fraction
作者:
高可 杨蕾 姚新叶 郑小璞
 (西安交通大学第一附属医院心血管内科,陕西 西安 710061)
Author(s):
GAO KeYANG LeiYAO XinyeZHENG Xiaopu
(Department of Cardiology,The First Affiliated Hospital of Xi’an Jiaotong University,Xian 710061,China)
关键词:
射血分数保留性心力衰竭动物模型舒张功能障碍高血压
Keywords:
HFpEF Animal models Diastolic dysfunction Hypertension
DOI:
10.16806/j.cnki.issn.1004-3934.2020.08.013
摘要:
近年来,左心室射血分数保留性心力衰竭(HFpEF)成为严重威胁人类健康的重要疾病。HFpEF患者约占总心力衰竭人数的50%以上,且病死率高,预后差。目前关于HFpEF的机制并不清楚,且缺乏有效的治疗药物。对HFpEF病理生理机制的理解既受到人体心肌活检的限制,也受到缺乏完整模拟人类病理的动物模型的限制。因此,建立合适的动物模型有助于深入了解HFpEF的病理生理机制及分子信号通路,并为潜在治疗的临床前研究提供新思路。现将综述目前可用于研究HFpEF的动物模型及其优缺点。
Abstract:
In recent years,heart failure with preserved ejection fraction(HFpEF) has become an important issue that poses a serious threat to human health. HFpEF patients account for more than 50% of the total number of heart failure patients,with high mortality and poor prognosis.At present,the mechanism of HFpEF is not clear,and there are no effective treatment drugs. Understanding the pathophysiology of HFpEF has been restricted both by human myocardial biopsies and by the lack of animal models that fully mimic human pathology.Therefore,the establishment of appropriate animal models can help us understand the pathophysiology mechanism and molecular signaling pathway of HFpEF,and provide new ideas for the preclinical investigation of potential therapies.In this review we will provide an overview of the currently available models to study HFpEF as well as present advantages and disadvantages of these models

参考文献/References:


[1]van Riet EE,Hoes AW,Wagenaar KP,et al. Epidemiology of heart failure:the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review[J]. Eur J Heart Fail,2016,18(3):242-252.

[2]Seferovi? PM,Petrie MC,Filippatos GS,et al. Type 2 diabetes mellitus and heart failure:a position statement from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail,2018,20(5):853-872.

[3]Upadhya B,Pisani B,Kitzman DW. Evolution of a geriatric syndrome:pathophysiology and treatment of heart failure with preserved ejection fraction[J]. J Am Geriatr Soc,2017,65(11):2431-2440.

[4]Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol,2014,11(9):507-515.

[5]Pieske B,Tsch?pe C,de Boer RA,et al. How to diagnose heart failure with preserved ejection fraction:the HFA-PEFF diagnostic algorithm:a consensus recommendation from the Heart Failure Association(HFA) of the European Society of Cardiology(ESC)[J]. Eur Heart J,2019,40(40):3297-3317.

[6]Zheng SL,Chan FT,Nabeebaccus AA,et al. Drug treatment effects on outcomes in heart failure with preserved ejection fraction:a systematic review and meta-analysis[J]. Heart,2018,104(5):407-415.

[7]朱文彤,姚亚丽. 射血分数保留的心力衰竭的发病机制及最新治疗研究进展[J]. 心血管病学进展,2019,40(4):557-560.

[8] Vaduganathan M,Michel A,Hall K,et al. Spectrum of epidemiological and clinical findings in patients with heart failure with preserved ejection fraction stratified by study design:a systematic review[J]. Eur J Heart Fail,2016,18(1):54-65.

[9] Oktay AA,Shah SJ. Current perspectives on systemic hypertension in heart failure with preserved ejection fraction[J]. Curr Cardiol Rep,2014,16(12):545.

[10] Tadic M,Cuspidi C,Frydas A,et al. The role of arterial hypertension in development heart failure with preserved ejection fraction:just a risk factor or something more?[J]. Heart Fail Rev,2018,23(5):631-639.

[11] de Almeida AC,van Oort RJ,Wehrens XH. Transverse aortic constriction in mice[J]. J Vis Exp,2010,38:1729.

[12] Litwin SE,Katz SE,Weinberg EO,et al. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy.Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure[J]. Circulation,1995,91(10):2642-2654.

[13] Respress JL,van Oort RJ,Li N,et al. Role of RyR2 phosphorylation at S2814 during heart failure progression[J]. Circ Res,2012,110(11):1474-1483.

[14] Patten RD,Hall-Porter MR. Small animal models of heart failure:development of novel therapies,past and present[J]. Circ Heart Fail,2009,2(2):138-144.

[15] Garcia-Menendez L,Karamanlidis G,Kolwicz S,et al. Substrain specific response to cardiac pressure overload in C57BL/6 mice[J]. Am J Physiol Heart Circ Physiol,2013,305(3):H397-H402.

[16] Doi R,Masuyama T,Yamamoto K,et al. Development of different phenotypes of hypertensive heart failure:systolic versus diastolic failure in Dahl salt-sensitive rats[J]. J Hypertens,2000,18(1):111-120.

[17] Esposito G,Cappetta D,Russo R,et al. Sitagliptin reduces inflammation,fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction[J]. Br J Pharmacol,2017,174(22):4070-4086.

[18] Kamimura D,Ohtani T,Sakata Y,et al. Ca2+ entry mode of Na +/Ca2+ exchanger as a new therapeutic target for heart failure with preserved ejection fraction[J]. Eur Heart J,2012,33(11):1408-1416.

[19] Omori Y,Ohtani T,Sakata Y,et al. L-Carnitine prevents the development of ventricular fibrosis and heart failure with preserved ejection fraction in hypertensive heart disease[J]. J Hypertens,2012,30(9):1834-1844.

[20] Tamaki S,Mano T,Sakata Y,et al. Interleukin-16 promotes cardiac fibrosis and myocardial stiffening in heart failure with preserved ejection fraction[J]. PLoS One,2013,8(7):e68893.

[21] Lovelock JD,Monasky MM,Jeong EM,et al. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity[J]. Circ Res,2012,110(6):841-850.

[22] Horgan S,Watson C,Glezeva N,et al. Murine models of diastolic dysfunction and heart failure with preserved ejection fraction[J]. J Card Fail,2014,20(12):984-995.

[23] Silberman GA,Fan TH,Liu H,et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction[J]. Circulation,2010,121(4):519-528.

[24] Grobe JL,Mecca AP,Mao H,et al. Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension[J]. Am J Physiol Heart Circ Physiol,2006,290(6):H2417-H2423.

[25] Iyer A,Chan V,Brown L. The DOCA-salt hypertensive rat as a model of cardiovascular oxidative and inflammatory stress[J]. Curr Cardiol Rev,2010,6(4):291-297.

[26] Sun Y,Liu G,Song T,et al. Upregulation of GRP78 and caspase-12 in diastolic failing heart[J]. Acta Biochim Pol,2008,55(3):511-516.

[27] Kuoppala A,Shiota N,Lindstedt KA,et al. Expression of bradykinin receptors in the left ventricles of rats with pressure overload hypertrophy and heart failure[J]. J Hypertens,2003,21(9):1729-1736.

[28] Regan JA,Mauro AG,Carbone S,et al. A mouse model of heart failure with preserved ejection fraction due to chronic infusion of a low subpressor dose of angiotensinⅡ[J]. Am J Physiol Heart Circ Physiol,2015,309(5):H771-H778.

[29] Deneke T,Shin D I,Balta O,et al. Postablation asymptomatic cerebral lesions:long-term follow-up using magnetic resonance imaging[J]. Heart Rhythm,2011,8(11):1705-1711.

[30] Takaki M. Cardiac mechanoenergetics for understanding isoproterenol-induced rat heart failure[J]. Pathophysiology,2012,19(3):163-170.

[31] Ma X,Song Y,Chen C,et al. Distinct actions of intermittent and sustained beta-adrenoceptor stimulation on cardiac remodeling[J]. Sci China Life Sci,2011,54(6):493-501.

[32] Rothermund L,Kreutz R,Kossmehl P,et al. Early onset of chondroitin sulfate and osteopontin expression in angiotensinⅡ-dependent left ventricular hypertrophy[J]. Am J Hypertens,2002,15(7 Pt 1):644-652.

[33] Zhao Z,Wang H,Jessup J A,et al. Role of estrogen in diastolic dysfunction[J]. Am J Physiol Heart Circ Physiol,2014,306(5):H628-H640.

[34] Jessup JA,Wang H,MacNamara LM,et al. Estrogen therapy,independent of timing,improves cardiac structure and function in oophorectomized mRen2.Lewis rats[J]. Menopause,2013,20(8):860-868.

[35] Wang H,Jessup JA,Lin MS,et al. Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats[J]. Cardiovasc Res,2012,94(1):96-104.

[36] Paulus WJ,Tsch?pe C. A novel paradigm for heart failure with preserved ejection fraction:comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol,2013,62(4):263-271.

[37] Kenny HC,Abel ED. Heart failure in type 2 diabetes mellitus[J]. Circ Res,2019,124(1):121-141.

[38] Dunlay SM,Givertz MM,Aguilar D,et al. Type 2 Diabetes Mellitus and Heart Failure,A Scientific Statement From the American Heart Association and Heart Failure Society of America[J]. J Card Fail,2019,25(8):584-619.

[39] Aon MA,Foster DB. Diabetic cardiomyopathy and the role of mitochondrial dysfunction:novel insights,mechanisms,and therapeutic strategies[J]. Antioxid Redox Signal,2015,22(17):1499-1501.

[40] Schilling JD,Mann DL. Diabetic cardiomyopathy:bench to bedside[J]. Heart Fail Clin,2012,8(4):619-631.

[41] Paolillo S,Marsico F,Prastaro M,et al. Diabetic cardiomyopathy:definition,diagnosis,and therapeutic implications[J]. Heart Fail Clin,2019,15(3):341-347.

[42] Concei??o G,Heinonen I,Louren?o AP,et al. Animal models of heart failure with preserved ejection fraction[J]. Neth Heart J,2016,24(4):275-286.

[43] Mori J,Patel VB,Abo Alrob O,et al. Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation[J]. Circ Heart Fail,2014,7(2):327-339.

[44] Wei M,Ong L,Smith MT,et al. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes[J]. Heart Lung Circ,2003,12(1):44-50.

[45] Sartori M,Conti FF,Dias DDS,et al. Association between diastolic dysfunction with inflammation and oxidative stress in females ob/ob mice[J]. Front Physiol,2017,8:572.

[46] Zhou X,Ma L,Habibi J,et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat[J]. Hypertension,2010,55(4):880-888.

[47] Hamdani N,Franssen C,Louren?o A,et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model[J]. Circ Heart Fail,2013,6(6):1239-1249.

[48] Reed AL,Tanaka A,Sorescu D,et al. Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse[J]. Am J Physiol Heart Circ Physiol,2011,301(3):H824-H831.

[49] Koch SE,Haworth KJ,Robbins N,et al. Age- and gender-related changes in ventricular performance in wild-type FVB/N mice as evaluated by conventional and vector velocity echocardiography imaging:a retrospective study[J]. Ultrasound Med Biol,2013,39(11):2034-2043.

相似文献/References:

[1]孙慧雪 郑美芳 李海 孙磊 顾翔.远程医疗应用于射血分数保留性心力衰竭的现状及进展[J].心血管病学进展,2020,(3):251.[doi:10.16806/j.cnki.issn.1004-3934.20.03.009]
 SUN Huixue,ZHENG Meifang,LI Hai,et al.Status Progress of Telemedicine in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2020,(8):251.[doi:10.16806/j.cnki.issn.1004-3934.20.03.009]
[2]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
 FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(8):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[3]周玲梅 张文倩 张智伟.体-肺动脉分流术在建立先天性心脏病动物模型中的应用进展[J].心血管病学进展,2021,(7):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
 ZHOU Lingmei,ZHANG Wenqian,ZHANG Zhiwei.Application Progress of Systemic Pulmonary Arterial Shunt in Animal Model of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2021,(8):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
[4]叶鹏飞 郭应坤 张怡 沈梦婷 李湘 陈林 徐婷 文凌仪.动脉粥样硬化斑块磁共振成像动物模型[J].心血管病学进展,2021,(8):730.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.014]
 YE Pengfei,GUO Yingkun,ZHANG Yi,et al.Animal Models for Magnetic Resonance Imaging of Atherosclerotic Plaque[J].Advances in Cardiovascular Diseases,2021,(8):730.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.014]
[5]刘春秋 熊双 刘剑刚 董国菊.射血分数保留性心力衰竭的诊断的研究进展[J].心血管病学进展,2021,(9):784.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
 LIU Chunqiu,XIONG Shuang,LIU Jiangang,et al.Diagnosis of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2021,(8):784.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[6]游月婷 黄刚 张小刚 张亚丽 邓自刚 屈树新 靳忠民 徐俊波.心力衰竭动物建模的进展[J].心血管病学进展,2021,(12):1105.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.012]
 YOU YuetingHUANG Gang,ZHANG Xiaogang,ZHANG Yali,et al.Animal Models Establishment of Heart Failure[J].Advances in Cardiovascular Diseases,2021,(8):1105.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.012]
[7]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
 SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(8):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
[8]赵菲 刘永铭.抗炎类药物对射血分数保留性心力衰竭患者心外膜脂肪组织的影响[J].心血管病学进展,2022,(1):41.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.011]
 ZHAO Fei,LIU Yongming.Effects of Anti-Inflammatory Drugs on Epicardial Adipose Tissue in Patients with Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(8):41.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.011]
[9]张文珺 牛小伟 刘永铭.m6A甲基化在射血分数保留性心力衰竭中的作用的研究进展[J].心血管病学进展,2022,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
 ZHANG Wenjun,NIU Xiaowei,LIU Yongming.m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(8):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
[10]胡美曦 黄志华 柳志红 赵智慧 罗勤 赵青.慢性血栓栓塞性肺动脉高压:构建动物模型的研究进展[J].心血管病学进展,2022,(3):236.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 HU Meixi,HUANG Zhihua,LIU Zhihong,et al.Chronic Thromboembolic Pulmonary Hypertension: Advances in Constructing Animal Models[J].Advances in Cardiovascular Diseases,2022,(8):236.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]

备注/Memo

备注/Memo:
基金项目:陕西省科技重点研发计划(2019ZDLSF01-01-01)
通信作者:郑小璞,E-mail:gaokenkx@163.com
收稿时间:2019-12-09
更新日期/Last Update: 2020-11-02