[1]王同霞 陈章荣.可溶ST2与心力衰竭患者预后的评价[J].心血管病学进展,2020,(5):495-498.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.013]
 WANG Tongxia,CHEN Zhangrong.Prognosis of Heart Failure Patients and Soluble ST2[J].Advances in Cardiovascular Diseases,2020,(5):495-498.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.013]
点击复制

可溶ST2与心力衰竭患者预后的评价()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年5期
页码:
495-498
栏目:
出版日期:
2020-05-25

文章信息/Info

Title:
Prognosis of Heart Failure Patients and Soluble ST2
作者:
王同霞1 陈章荣2
(1.大理大学研究生院,云南?大理?671000;2.大理大学第一附属医院心内科,云南 大理 671000)
Author(s):
WANG Tongxia1 CHEN Zhangrong12
(Dali University Graduate School,Dali 671000,Yunnan,China;2.Department of Cardiology,The First Affiliated Hospital of Dali University,Dali 671000,Yunnan,China)
关键词:
心力衰竭生物标志物可溶ST2利尿钠肽
Keywords:
Heart failure Biomarker Soluble ST2 Natriuretic peptide
DOI:
10.16806/j.cnki.issn.1004-3934.2020.05.013
摘要:
心血管疾病生物标志物是诊断、治疗预后不可缺少的一种工具,可溶ST2是心肌细胞应激和纤维化的标志物,用于对患有多种心血管疾病的患者进行风险分层,是心力衰竭患者临床评估中利尿钠肽的补充,为治疗提供帮助。住院患者降利尿钠肽水平作为出院后发生心力衰竭风险的评估,出院时的较水平预示着结果更差。除利尿钠肽之外,可溶ST2已被证明可为患者评估预后,其浓度的变化和最终浓度都能独立地预测患者的结果。
Abstract:
Cardiovascular disease biomarkers are an indispensable tool for diagnosistreatment and prognosis. Soluble ST2 is a marker of cardiomyocyte stress and fibrosis,and is used to risk stratification of patients with multiple cardiovascular diseases. It is a supplement to natriuretic peptide in clinical evaluation of patients with heart failure and can help with treatment. Lowering natriuretic peptide levels in hospitalized patients can be used as an assessment of the risk of heart failure after discharge,but regardless of the reduction,higher levels at discharge still indicate worse outcomes. In addition to natriuretic peptides,soluble ST2 has been shown to assess prognosis for patients,and its changes in concentration and final concentrations independently predict patient outcomes

参考文献/References:

[1] McMurray JJAdamopoulos S,Anker SD,et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012:the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC[J]. Eur Heart J,2012,33(14):1787-1847.
[2] Jo S,Kim E,Kwak A,et al. Reconstitution of ST2 (IL-1R4) specific for IL-33 activity; no suppression by IL-1Ra though a common chain IL-1R3 (IL-1RAcP) shared with IL-1[J]. Cytokine,2016,83:33-40.
[3] Pusceddu I,Dieplinger B,Mueller T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans[J]. Clin Chim Acta,2019,495:493-500.
[4] Garbern JC,Williams J,Kristl AC,et al. Dysregulation of IL-33/ST2 signaling and myocardial periarteriolar fibrosis[J]. J Mol Cell Cardiol,2019,128:179-186.
[5] Gelfman LP,Bakitas M,Warner SL,et al. The state of the science on integrating palliative care in heart failure[J]. J Palliat Med,2017,20(6):592-603.
[6]Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints:preferred definitions and conceptual framework[J]. Clin Pharmacol Ther,2001,69(3):89-95.
[7] Ahmad T,Fiuzat M,Pencina MJ,et al. Charting a roadmap for heart failure biomarker studies[J]. JACC Heart Fail,2014,2(5):477-488.
[8] Farnsworth CW,Bailey AL,Jaffe AS,et al. Diagnostic concordance between NT-proBNP and BNP for suspected heart failure[J]. Clin Biochem,2018,59:50-55.
[9] van Kimmenade RR,Januzzi JL Jr. Emerging biomarkers in heart failure[J]. Clin Chem,2012,58(1):127-138.
[10] 臧雁翔,李为民. 以利钠肽为导向的心力衰竭治疗模式研究进展[J]. 心血管病学进展,2019,40(4):554-556.
[11] Xin WLin Z,Mi S. Does B-type natriuretic peptide-guided therapy improve outcomes in patients with chronic heart failure? A systematic review and meta-analysis of randomized controlled trials[J]. Heart Fail Rev,2015,20(1):69-80.
[12] Ahmad T,Fiuzat M,Neely B,et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure[J]. JACC Heart Fail,2014,2(3):260-268.
[13] Grakova EV,Kopeva KV,Teplyakov AT,et al. Prognostic role of ST2 in patients with chronic heart failure of ischemic etiology and carbohydrate metabolism disorders[J]. Ter Arkh,2019,91(1):32-37.
[14] O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily:10 years of progress[J]. Immunol Rev,2008,226:10-18.
[15] Kieler M,Unseld M,Wojta J,et al. Plasma levels of interleukin-33 and soluble suppression of tumorigenicity 2 in patients with advanced pancreatic ductal adenocarcinoma undergoing systemic chemotherapy[J]. Med Oncol,2018,36(1):1.
[16] Januzzi JL,Pascual-Figal D,Daniels LB. ST2 testing for chronic heart failure therapy monitoring:the International ST2 Consensus Panel[J]. Am J Cardiol,2015,115(7 suppl):70B-75B.
[17] Richards AM,di Somma S,Mueller T. ST2 in stable and unstable ischemic heart diseases[J]. Am J Cardiol,2015,115(7 suppl):48B-58B.
[18] Januzzi JL Jr,Peacock WF,Maisel AS,et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea:results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study[J]. J Am Coll Cardiol,2007,50(7):607-613.
[19] Ky B,French B,McCloskey K,et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure[J]. Circ Heart Fail,2011,4(2):180-187.
[20] Aimo A,Vergaro G,Passino C,et al. Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure:a meta-analysis[J]. JACC Heart Fail,2017,5(4):280-286.
[21] Januzzi JL Jr,Richards AM. Natriuretic peptide-guided heart failure therapy after the GUIDE-IT study[J]. Circulation,2018,137(20):2101-2103.
[22] Sanada S,Hakuno D,Higgins LJ,et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system[J]. J Clin Invest,2007,117(6):1538-1549.
[23] Demyanets S,Kaun C,Pentz R,et al. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature[J]. J Mol Cell Cardiol,2013,60:16-26.
[24] Weinberg EO,Shimpo M,Hurwitz S,et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker[J]. Circulation,2003,107(5):721-726.
[25] Manzano-Fernandez S,Mueller T,Pascual-Figal D,et al. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction[J]. Am J Cardiol,2011,107(2):259-267.
[26] Bayes-Genis A,de Antonio M,Vila J,et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification:ST2 versus galectin-3[J]. J Am Coll Cardiol,2014,63(2):158-166.
[27] Anand IS,Rector TS,Kuskowski M,et al. Prognostic value of soluble ST2 in the Valsartan Heart Failure Trial[J]. Circ Heart Fail,2014,7(3):418-426.
[28] Gaggin HK,Szymonifka J,Bhardwaj A,et al. Head-to-head comparison of serial soluble ST2,growth differentiation factor-15,and highly-sensitive troponin T measurements in patients with chronic heart failure[J]. JACC Heart Fail,2014,2(1):65-72.
[29] Dalal JJ,Digrajkar A,Das B,et al. ST2 elevation in heart failure,predictive of a high early mortality[J]. Indian Heart J,2018,70(6):822-827.

相似文献/References:

[1]郭君君,郑宏超,曹阳.生物标志物对急性心肌梗死介入治疗预后的预测意义[J].心血管病学进展,2016,(1):37.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.010]
 GUO Junjun,ZHENG Hongchao,CAO Yang.Prognostic Significance of Biomarkers in Predicting Acute Myocardial Infarction after Percutaneous Coronary Intervention[J].Advances in Cardiovascular Diseases,2016,(5):37.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.010]
[2]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(5):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[3]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(5):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[4]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(5):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[5]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(5):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[6]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(5):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[7]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[8]姚雯,毛露,孙硕,等.心源性外泌体作为冠心病标志物和新靶点展望[J].心血管病学进展,2019,(6):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
 YAO Wen,MAO Lu,SUN Shuo,et al.Exogenous Exosome as A New Marker and Target of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(5):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
[9]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(5):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[10]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(5):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[11]刘壮壮 黄宇理.心力衰竭生物标志物的研究进展[J].心血管病学进展,2020,(1):67.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.018]
 LIU Zhuangzhuang,HUANG Yuli.Biomarkers for Heart Failure[J].Advances in Cardiovascular Diseases,2020,(5):67.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.018]
[12]孙悦宁 富路.左心室逆重构在心力衰竭中的研究新进展[J].心血管病学进展,2021,(6):525.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.012]
 SUN Yuening,FU Lu.Research Progress of Left Ventricular Reverse Remodeling in Heart Failure[J].Advances in Cardiovascular Diseases,2021,(5):525.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.012]
[13]魏天天?王学超?吴海波?杜荣品.心力衰竭生物标志物的研究进展[J].心血管病学进展,2021,(7):610.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.009]
 WEI Tiantian,WANG Xuechao,WU Haibo,et al.Biomarkers of Heart Failure[J].Advances in Cardiovascular Diseases,2021,(5):610.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.009]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81960085)收稿日期:2019-11-01
更新日期/Last Update: 2020-08-12