[1]李丽 张昕.内脏淤血与肠道微环境在晚期心力衰竭中的作用[J].心血管病学进展,2020,(6):595.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.009]
 LI LiZHANG Xin.The Role of Splanchnic Congestion and the Intestinal Microenvironment in the Pathogenesis of Advanced Heart Failure[J].Advances in Cardiovascular Diseases,2020,(6):595.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.009]
点击复制

内脏淤血与肠道微环境在晚期心力衰竭中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年6期
页码:
595
栏目:
综述
出版日期:
2020-06-25

文章信息/Info

Title:
The Role of Splanchnic Congestion and the Intestinal Microenvironment in the Pathogenesis of Advanced Heart Failure
作者:
李丽1 张昕12
(1.包头医学院研究生院,内蒙古 包头014000;2.包头医学院第一附属医院心功能科,内蒙古 包头014010)
Author(s):
LI Li1ZHANG Xin 12
(1. Baotou Medical College Graduate School , Baotou 014010,Inner Mongolia,China; 2. Department of Cardiac Function, The First Affiliated Hospital of Baotou Medical College, Baotou 014010,Inner Mongolia,China)
关键词:
心力衰竭内脏淤血肠道微环境钠-氢转运体
Keywords:
Heart failureVisceral congestionIntestinal microenvironmentSodium hydrogen transporter
DOI:
10.16806/j.cnki.issn.1004-3934.2020.06.009
摘要:
右心衰竭经常出现在晚期心力衰竭中,而内脏循环淤血在右心衰竭的发病机理中扮演着关键角色,增进对内脏循环淤血的了解,有可能会使我们找到新的方法治疗晚期心力衰竭。
Abstract:
Right heart failure often occurs in advanced heart failure, and visceral circulation congestion plays a key role in the pathogenesis of right heart failure. Improving the understanding of visceral circulation congestion may lead us to find new methods to treat advanced heart failure

参考文献/References:

[1]Spinarova L,Meluzin J,Toman J,et al.Right ventricular dysfunction in chronic heart failure patients[J].Eur J Heart Fail,2005,7(4):485-489.

[2]Puwanant S,Priester TC,Mookadam F,et al.Right ventricular function in patients with preserved and reduced ejection fraction heart failure[J].Eur J Echocardiogr, 2009 ,10(6):733-737.

[3]Mullens W,Abrahams Z,Francis GS,et al.Importance of venous congestion for worsening of renal function in advanced decompensated heart failure[J].J Am Coll Cardiol,2009,53(7):589-596.

[4]Bookstein C,DePaoli AM,Xie Y,et al.Na?/H? exchangers, NHE-1 and NHE-3,of rat intestine.Expression and localization[J].J Clin Invest,1994,93(1):106-113.

[5]Broere N,Chen M,Cinar A,et al.Defective jejunal and colonic salt absorption and altered Na(?)/H (?) exchanger 3(NHE3) activity in NHE regulatory factor 1(NHERF1) adaptor protein-deficient mice[J].Pflugers Arch,2009,457(5):1079-1091.

[6]Gawenis LR,Stien X,Shull GE,et al.Intestinal NaCl transport in NHE2 and NHE3 knockout mice[J].Am J Physiol Gastrointest Liver Physiol,2002,282(5):G776-G784.

[7]Lucioni A,Womack C,Musch MW,et al.Metabolic acidosis in rats increases intestinal NHE2 and NHE3 expression and function[J].Am J Physiol Gastrointest Liver Physiol,2002,283(1):G51-G56.

[8]Musch MW,Lucioni A,Chang EB.Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na? pump activity[J].Am J Physiol Gastrointest Liver Physiol,2008,295(5):G909-G919.

[9]Cetin S,Dunklebarger J,Li J,et al.Endotoxin differentially modulates the basolateral and apical sodium/proton exchangers (NHE) in enterocytes[J].Surgery,2004,136(2):375-383.

[10]Kiela PR,Guner YS,Xu H,et al.Age-and tissue-specific induction of NHE3 by glucocorticoids in the rat small intestine[J].Am J Physiol Cell Physiol,2000,278(4):C629-C637.

[11]Fava F,Gitau R,Griffin B,et al.The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome‘at-risk’population[J].Int J Obes,2013,37(2):216-223.

[12]Hamer HM,Jonkers D,Venema K,et al.Review article:the role of butyrate on colonic function[J].Aliment Pharmacol Ther,2008,27(2):104-119.

[13]Glover LE,Lee JS,Colgan SP.Oxygen metabolism and barrier regulation in the intestinal mucosa[J].J Clin Invest,2016,126(10):3680-3688.

[14]Kelly CJ,Zheng L,Campbell EL,et al.Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J].Cell Host Microbe,2015,17(5):662-671.

[15]Pluznick JL.Microbial short-chain fatty acids and blood pressure regulation[J].Curr Hypertens Rep,2017,19(4):25.

[16]Pluznick JL,Protzko RJ,Gevorgyan H,et al.Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J].Proc Natl Acad Sci U S A,2013,110(11):4410-4415.

[17]Marques FZ,Nelson E,Chu PY,et al.High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice[J].Circulation,2017,135(10):964-977.

[18]Organ CL,Otsuka H,Bhushan S,et al.Choline diet and its gut microbe-derived metabolite,trimethylamine N-oxide,exacerbate pressure overload-induced heart failure[J].Circ Heart Fail,2016,9(1):e002314.

[19]Senthong V,Wang Z,Li XS,et al.Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease:the contributory role of intestinal microbiota in a COURAGE-like patient cohort[J].J Am Heart Assoc,2016,5(6):e002816.

[20]Senthong V,Li XS,Hudec T,et al.Plasma trimethylamine N-oxide,a gut microbe-generated phosphatidylcholine metabolite,is associated with atherosclerotic burden[J].J Am Coll Cardiol,2016,67(22):2620-2628.

[21]Tang WH,Wang Z,Fan Y,et al.Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure:refining the gut hypothesis[J].J Am Coll Cardiol,2014,64(18):1908-1914.

[22]Tang WH,Wang Z,Kennedy DJ,et al.Gut microbiota-dependent trimethy-lamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease[J].Circ Res,2015,116(3):448-455.

[23]Tang WH,Wang Z,Li XS,et al.Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus[J].Clin Chem,2017,63(1):297-306.

[24]Valentova M,von Haehling S,Anker SD,et al.Cardiac hepatopathy versus end-stage liver disease:two different entities[J].J Am Coll Cardiol,2014,63(17):1809-1810.

[25]Sandek A,Anker SD,von Haehling S.The gut and intestinal bacteria in chronic heart failure[J].Curr Drug Metab,2009,10(1):22-28.

[26]Sandek A,Rauchhaus M,Anker SD,et al.The emerging role of the gut in chronic heart failure[J].Curr Opin Clin Nutr Metab Care,2008,11(5):632-639.

[27]Sandek A,Bjarnason I,Volk HD,et al.Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure[J].Int J Cardiol,2012,157(1):80-85.

[28]Mayerhofer CC,Awoyemi AO,Moscavitch SD,et al.Design of the GutHeart-targeting gut microbiota to treat heart failure–trial:a phase Ⅱ,randomized clinical trial[J].ESC Heart Fail,2018,5(5):977-984.

[29]Vlachogiannakos J,Saveriadis AS,Viazis N,et al.Intestinal decontamination improves liver haemodynamics in patients with alcohol-related decompensated cirrhosis[J].Aliment Pharmacol Ther,2009,29(9):992-999.

[30]Dong T,Aronsohn A,Gautham Reddy K,et al.Rifaximin decreases the incidence and severity of acute kidney injury and hepatorenal syndrome in cirrhosis[J].Dig Dis Sci,2016,61(12):3621-3626.

[31]Ponziani FR,Gerardi V,Pecere S,et al.Effect of rifaximin on gut microbiota composition in advanced liver disease and its complications[J].World J Gastroenterol,2015,21(43):12322-12333.

[32]Ridker PM,Everett BM,Thuren T,et al.Antiinflammatory therapy with canaki- numab for atherosclerotic disease[J].N Engl J Med,2017,377(12):1119-1131.

[33]Ridker PM,Cannon CP,Morrow D,et al.C-reactive protein levels and outcomes after statin therapy[J].N Engl J Med,2005,352(15):20-28.

[34]Tang WH,Kitai T,Hazen SL.Gut microbiota in cardiovascular health and disease[J].Circ Res,?2017,120(7):1183-1196.

[35]Harikrishnan S. Diet, the gut microbiome and?heart failure [J].Card Fail Rev,2019,5(2):119-122.

[36]Park Y,Subar AF,Hollenbeck A,et al.Dietary fiber intake and mortality in the NIH-AARP diet and health study[J].Arch Int Med,2011,171(12):1061-1068.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(6):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(6):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(6):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(6):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(6):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(6):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(6):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(6):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(6):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

更新日期/Last Update: 2020-09-21