参考文献/References:
[1] Zuo X,Zong F,Wang H,et al. Iptakalim,a novel ATP-sensitive potassium channel opener,inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α[J]. J Biomed Res,2011,25(6):392-401.
[2] Fu LC,Lv Y,Zhong Y,et al. Tyrosine phosphorylation of Kv1.5 is upregulated in intrauterine growth retardation rats with exaggerated pulmonary hypertension[J]. Braz J Med Biol Res,2017,50(11):e6237.
[3] Guo S,Shen Y,He G,et al. Involvement of Ca2+-activated K+ channel 3.1 in hypoxia-induced pulmonary arterial hypertension and therapeutic effects of TRAM-34 in rats [J]. Biosci Rep,2017,37(4).pii: BSR20170763.
[4] Barnes EA,Lee L,Barnes SL,et al. β1-Subunit of the calcium-sensitive potassium channel modulates the pulmonary vascular smooth muscle cell response to hypoxia[J]. Am J Physiol Lung Cell Mol Physiol,2018,315(2):L265-L275.
[5] Platoshyn O,Remillard CV,Fantozzi I,et al. Identification of functional voltage-gated Na(+) channels in cultured human pulmonary artery smooth muscle cells[J]. Pflugers Arch,2005,451(2):380-387.
[6] Liu Y,Tian XY,Huang Y,et al. Rosiglitazone attenuated endothelin-1-induced vasoconstriction of pulmonary arteries in the rat model of pulmonary arterial hypertension via?differential regulation of ET-1 receptors[J]. PPAR Res ,2014,2014:374075.
[7] Guo Q,Xu H,Yang X,et al. Notch activation of Ca2+-sensing receptor mediates hypoxia-induced pulmonary hypertension[J]. Hypertens Res,2017,40(2):117-129.
[8] Sala MA,Chen C,Zhang Q,et al. JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension[J]. J Biol Chem,2018,293(1):271-284.
[9] Wang CC,Ying L,Barnes EA,et al. Pulmonary artery smooth muscle cell HIF-1α regulates endothelin expression via microRNA-543[J]. Am J Physiol Lung?Cell?Mol Physiol,2018,315(3):L422-L431.
[10] Vanhoutte PM,Zhao Y,Xu A,et al. Thirty years of saying no:sources,fate,actions,and misfortunes of the endothelium-derived vasodilator mediator[J]. Circ Res,2016,119(2):375-396.
[11] Bredmose PP,Buskop C,L?mo AB. Inhaled nitric oxide might be a?contributing tool for successful resuscitation?of cardiac arrest?related to pulmonary hypertension[J]. Scand J Trauma Resusc Emerg Med,2019,27(1):22.
[12] Mughal A,Sun C,ORourke ST. Activation of large conductance,calcium-activated potassium channels by nitric oxide mediates apelin-induced relaxation of isolated rat coronary arteries[J]. J Pharmacol Exp Ther,2018,366(2):265-273.
[13] 李敏霞,陈亚红. 硫化氢在肺血管重塑中的调节机制及信号通路[J]. 生理科学进展,2018,49(1):74-78.
[14] Christou H,Hudalla H,Michael Z,et al. Impaired pulmonary arterial vasoconstriction and nitric oxide-mediated relaxation underlie severe pulmonary hypertension in the sugen-hypoxia rat model[J]. J Pharmacol Exp Ther,2018,364(2):258-274.
[15] 陈海华,庄兰妹,季志娟,等. 慢阻肺引发肺动脉高压预后评价与ET-1、H2S、NO的相关性研究[J]. 标记免疫分析与临床,2019,26(4):607-611,624.
[16] Sun XZ,Li SY,Tian XY,et al. Effect of Rho kinase inhibitor fasudil on the expression ET-1 and NO in rats with hypoxic pulmonary hypertension[J]. Clin Hemorheol Microcirc,2019,71(1):3-8.
[17] Lee H,Yeom A,Kim KC,et al. Effect of ambrisentan therapy on the expression of endothelin receptor,endothelial nitric oxide synthase and NADPH oxidase 4 in monocrotaline-induced pulmonary arterial hypertension rat model[J]. Korean Circ J,2019,49(9):866-876.
[18] Jernigan NL,Walker BR,Resta TC. Endothelium-derived reactive oxygen species and endothelin-1 attenuate no-dependent pulmonary vasodilation following chronic hypoxia[J]. Am J Physiol Lung Cell Mol Physiol,2004,287(4):L801-L808.
[19] Satwiko MG,Ikeda K,Nakayama K,et al. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension[J]. Biochem Biophys Res Commun,2015,465(3):356-362.
[20] 奚群英,彭晖. 免疫细胞与肺动脉高压[J]. 心血管病学进展,2019,40(3):463-466.
[21] 杨诚忠,李满满,罗羽莎,等. Light在低氧性肺动脉高压形成中的作用及机制[J]. 第三军医大学学报,2018,40(8):643-651.
[22] Hashimoto-Kataoka T,Hosen N,Sonobe T,et al. Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension[J]. Proc Natl Acad Sci U S A,2015,112(20):E2677-E2686.
[23] Maston LD,Jones DT,Giermakowska W,et al. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension [J]. Am J Physiol Lung Cell Mol Physiol,2017,312(5):L609-L624.
[24] 张俊志,李涵葳,张中军,等. TNF-α在先天性体-肺分流性肺动脉高压大鼠中的表达变化[J]. 华中科技大学学报(医学版),2018,47(4):69-73.
[25] 郎明健,赵黎丙,何培根,等. 结缔组织生长因子在心血管疾病的作用及研究进展[J]. 心血管病学进展,2011,32(1):118-121.
[26] Cicha I,Goppelt-Struebe M. Connective tissue growth factor:context-dependent functions and mechanisms of regulation[J]. Biofactors,2009,35(2):200-208.
[27] 胡煜,刘斌. 结缔组织生长因子对血管平滑肌细胞增殖、迁移和细胞外基质沉积影响的研究进展[J]. 国际儿科学杂志,2010,37(2):152-154.
[28] 史小映,张玉顺,龙昌柏. CTGF 与低氧性肺血管重构的关系及波生坦的调控作用[J]. 临床医学研究与实践,2018,3(33):12-14,25.
[29] Zhao W,Wang C,Liu R,et al. Effect of TGF-β1 on the migration and recruitment of mesenchymal stem cells after vascular balloon injury: involvement of matrix metalloproteinase-14[J].Sci Rep,2016,6:21176.
[30] Zhang J,Tang L,Dai F,et al. ROCK inhibitors alleviate myofibroblast transdifferentiation and vascular remodeling via decreasing TGF-β1-mediated RhoGDI expression [J]. Gen Physiol Biophys,2019,38(4):271-280.
[31] 张艳,王志毅,石小枫,等. 同种肝细胞移植细胞排斥反应机理及肝再生增强因子的作用[J]. 免疫学杂志,2007,23(6):668-671.
[32] Nunes H,Lebrec D,Mazmanian M,et al. Role of nitric oxide in hepatopulmonary syndrome in cirrhotic rats[J]. Am J Respir Crit Care Med,2001,164(5):879-885.
[33] Zhang J,Luo B,Tang L,et al. Pulmonary angiogenesis in a rat model of hepatopulmonary syndrome[J]. Gastroenterology,2009,136(3):1070-1080.
[34] Thenappan T,Goel A,Marsboom G,et al. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion[J]. Am J Respir Crit Care Med,2011,183(8):1080-1091.
[35] Minatsuki S,Takeda N,Soma K,et al. Murine model of pulmonary artery overflow vasculopathy revealed macrophage accumulation in the lung[J]. Int Heart J,2019,60(2):451-456.
[36] 王彬彬,吴庆华. 原发性肺动脉高压的遗传学研究进展[J].中华医学遗传学杂志,2018,35(4):600-603.
[37] 张春芳,徐双兰,赵方允,等. 表观遗传学在肺动脉高压发病机制和治疗中的研究进展[J].中国药理学通报,2018,34(8):1041-1044.
[38] Opitz I,Kirschner MB. Molecular research in chronic thromboembolic pulmonary hypertension[J]. Int J Mol Sci,2019,20(3),pii: E784.
[39] Sun Y,Lin X,Li L. Identification of biomarkers for schistosoma-associated pulmonary arterial hypertension based on RNA-Seq data of mouse whole lung tissues[J]. Lung,2017,195(3):377-385.
[40] Hayabuchi Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension[J]. Pediatr Cardiol,2017,38(1):1-14.
相似文献/References:
[1]孟晓冬,单福祥,综述,等.肺动脉高压治疗进展[J].心血管病学进展,2016,(3):319.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.028]
MENG Xiaodong,SHAN Fuxiang,WANG Yanhui.Advances in Research of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2016,(3):319.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.028]
[2]张艺韬,综述,曾伟杰,等.左心疾病相关肺动脉高压流行病学[J].心血管病学进展,2016,(4):333.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.002]
ZHANG Yitao,ZENG Weijie,CHENG Kanglin.Epidemiology of Pulmonary Hypertension due to Left Heart Disease[J].Advances in Cardiovascular Diseases,2016,(3):333.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.002]
[3]汪汉,刘英杰,王燕凤.长链非编码RNA与肺动脉高压[J].心血管病学进展,2019,(6):898.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.015]
WANG Han,LIU Yingjie,WANG Yanfeng.Long Non-coding RNA in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(3):898.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.015]
[4]汪汉 邓祁 刘英杰.系统性红斑狼疮相关肺动脉高压的诊断、治疗及预后[J].心血管病学进展,2019,(8):1142.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.018]
WANG Han,DENG Qi,LIU Yingjie.Diagnosis,Treatment and Prognosis of Pulmonary Arterial Hypertension in Systemic Lupus Erythematosus[J].Advances in Cardiovascular Diseases,2019,(3):1142.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.018]
[5]段宇 贾静 步睿 李涛 韦宏.急性伊洛前列素吸入对肺动脉高压患者右心室功能的影响[J].心血管病学进展,2019,(9):1319.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.034]
DUAN Yu,JIA Jing,BU Rui,et al.The Effect of Acute Iloprost Inhalation on Right Ventricular Function in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(3):1319.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.034]
[6]查玉杰 何庆.肺动脉高压发生发展中的相关因子[J].心血管病学进展,2020,(2):192.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.024]
ZHA YujieHE Qing.The Relevant Factors in the Development of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):192.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.024]
[7]韩柯,孟祥光,赵育洁.趋化因子及其受体在肺动脉高压中的研究进展[J].心血管病学进展,2020,(3):296.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.020]
HAN Ke,MENG Xiangguang,ZHAO Yujie.Chemokines and Their Receptors in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):296.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.020]
[8]刘超 曲杰 王明娟 徐倩 范彦芳 周晓慧 单伟超.肺动脉高压对扩张型心肌病预后的影响[J].心血管病学进展,2020,(4):424.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.023]
LIU ChaoQU JieWANG MingjuanXU QianFAN YanfangZHOU XiaohuiSAN Weichao.The Effect of Pulmonary Hypertension on the Prognosis of Dilated Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(3):424.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.023]
[9]向杰 刘明鑫 张伟 黄从新.基于生物信息学分析探究肺动脉高压关键基因和通路[J].心血管病学进展,2020,(4):428.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.024]
Xiang JieLiu MingxinZhang WeiHuang Congxin.Bioinformatics Analysis of Key Genes and Pathways in Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):428.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.024]
[10]刘雪鸢 徐燕萍 殷跃辉.交感神经去除术在肺动脉高压治疗中的研究进展[J].心血管病学进展,2020,(5):480.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.010]
LIU Xueyuan,XU Yanping,YIN Yuehui.Sympathetic Denervation in Treatment of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2020,(3):480.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.010]