参考文献/References:
[1] Savoye C,Equine O,Tricot O,et al. Left ventricular remodeling after anterior wall acute myocardial infarction in modern clinical practice (from the REmodelage VEntriculaire [REVE] study group)[J]. Am J Cardiol,2006,98(9):1144-1149.
[2] Gaasch WH,Zile MR. Left ventricular structural remodeling in health and disease:with special emphasis on volume,mass,and geometry[J]. J Am Coll Cardiol,2011,58(17):1733-1740.
[3] Corallini F,Secchiero P,Beltrami AP,et al. TNF-alpha modulates the migratory response of mesenchymal stem cells to TRAIL[J]. Cell Mol Life Sci,2010,67(8):1307-1314.
[4] 闫会,吴莉侠,张艳秋,等. 外泌体在心力衰竭中的研究进展[J].心血管病学进展,2019,40(2):287-290.
[5] Lau NC,Lim LP,Weinstein EG,et al. An abundant class of tiny RNAs with probable regulatory roles in caenorhabditis elegans[J]. Science,2001,294(5543):858-862.
[6] Brennecke J,Hipfner DR,Stark A,et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J]. Cell,2003,113(1):25-36.
[7] Pritchard CC,Cheng HH,Tewari M. MicroRNA profifiling:approaches and considerations[J]. Nat Rev Genet,2012,13:(5)358-369.
[8] Redshaw N,Wilkes T,Whale A,et al. A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantifification accuracy and repeatability[J]. Biotechniques,2013,54:155-164.
[9] Malone JH,Oliver B. Microarrays,deep sequencing and the true measure of the transcriptome[J]. BMC Biol, 2011,31(9):34.
[10] Kotlarek M,Kubiak A,Ja??wski K,et al. MicroRNA analysis using the quantitative real-time PCR reaction[J]. Methods Mol Biol,2018,1823:69-85.
[11] Sui W,Liu F,Chen J,et al. Microarray technology for analysis of microRNA expression in renal biopsies of lupus nephritis patients[J]. Methods Mol Biol,2014,1134:211-220.
[12] Huang QX,Cheng XY,Mao ZC,et al. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus,xylophilus by deep sequencing[J]. PLoS One,2010,,5(10):e13271. 
[13] Lee LW,Zhang S,Etheridge A,et al.Complexity of the microRNA repertoire revealed by next-generation sequencing[J]. RNA,2010,16(11):2170-2180.
[14] He CY,Cui K,Zhang JG,et al. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo[J]. BMC Plant Biol,2013,21,13:119.
[15] Kleftogiannis D,Korfiati A,Theofilatos K,et al. Where we stand, where we are moving: surveying computational techniques for identifying miRNA genes and uncovering their regulatory role[J]. J Biomed Inform,2013,46(3):563-573.
[16] Latet SC,van Herck PL,Claeys MJ,et al. Failed downregulation of circulating microRNA-155 in the early phase after ST elevation myocardial infarction is associated with adverse left ventricular remodeling[J]. Cardiology,2017,138(2):91-96.
[17] Guo ML,Guo LL,Weng YQ. Implication of peripheral blood miRNA-124 in predicting acute myocardial infarction[J]. Eur Rev Med Pharmacol Sci,2017,21(5):1054-1059.
[18] Gidl? O,Andersson P,van der Pals J,et al.Cardiospecyfic microRNA plasma levels correlate with troponin and cardiac function in patient with ST elevation myocardial infarction, are selectively detected in urine samples[J]. Cardiology,2011,118(4):217-226.
[19] Matkovich SJ,Wang W,Tu Y,et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J]. Circ Res, 2010,106(1):166-175.
[20] Duisters RF,Tijsen AJ,Schroen B,et al. miR-133 and miR-30 regulate connective tissue growth factor:implications for a role of microRNAs in myocardial matrix remodeling[J]. Circ Res,2009,104(2):170-178.
[21] Liu ZH,Sun XP,Zhou SL,et al. Research on the relations between the variation of miRNA-184 before and after treatment of acute myocardial infarction and prognosis[J]. Eur Rev Med Pharmacol Sci,2017,21(4):843-847.
[22] van Empel VP,de Windt LJ,da Costa Martins PA. Circulating miRNAs:reflecting or affecting cardiovascular disease[J]. Curr Hypertens Rep,2012,14(6):498-509.
[23] Dong H,Hu S,Sun R,et al. High levels of circulating microrna-3667-3p are associated with coronary plaque erosion in patients with ST-segment elevation myocardial infarction[J]. Int Heart J,2019,60(5):1061-1069.
[24] Zhang J,Pan J,Yang M,et al. Up-regulating microRNA-203 alleviates myocardial remodeling and cell apoptosis through down-regulating PTP1B in rats with myocardial infarction[J]. J Cardiovasc Pharmacol,2019,DOI:10.1097/FJC.0000000000000733[Epub ahead of print].
[25] Bayoumi AS,Teoh JP,Aonuma T,et al. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition[J]. Cardiovasc Res,2017,113(13):1603-1614.
[26] Kim IM,Wang Y,Park KM,et al. Beta-arrestin1-biased beta1-adrenergic receptor signaling regulates microRNA processing[J]. Circ Res,2014,114(5):833-844.
[27] Saraste A,Koskenvuo JW,Saraste M,et al. Coronary artery flow velocity profile measured by transthoracic Doppler echocardiography predicts myocardial viability after acute myocardial infarction[J]. Heart,2007, 93(4):456-457.
[28] Zhang M,Cheng YJ,Sara J,et al.Circulating microRNA-145 is associated with acute myocardial infarction and heart failure[J]. Chin Med J,2017,130:51-56 .
[29] Cheng Y,Liu X,Yang J,et al. MicroRNA-145,a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation[J]. Circ Res,2009,105(2):158-166.
[30] Devaux Y,Vausort M,McCann GP,et al.MicroRNA-150 a novel marker of left ventricular remodelling after acute myocardial infarction[J]. Circ Cardiovasc Genet,2013,6(3):290-298.
[31] Bristow MR,Ginsburg R,Minobe W,et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts[J]. N Engl J Med,1982,307(4):205-211.
[32] Ørn S,Manhenke C,Ueland T,et al. C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction[J]. Eur Heart J,2009,30(10):1180-1186.
[33] Donners MM,Beckers L,Lievens D,et al. The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling[J]. Blood,2008,111(9):4596-4604.
[34] Desjarlais M,Dussault S,Dhahri W,et al.MicroRNA-150 modulates ischemia-induced neovascularization in atherosclerotic conditions[J]. Arterioscler Thromb Vasc Biol,2017,37(5):900-908.
[35] Qian L,Pan S,Shi L,et al. Downregulation of microRNA-218 is cardioprotective against cardiac fibrosis and cardiac function impairment in myocardial infarction by binding to MITF[J]. Aging(Albany NY),2019,11(15): 5368-5388.
[36] Zhang WQ,Xie BQ. A meta-analysis of the relations between blood microRNA-208b detection and acute myocardial infarction[J]. Eur Rev Med Pharmacol Sci,2017,21(4):848-854.
[37] Lü P,Zhou M,He J,et al.Circulating miR-208b and miR-34a are associated with left ventricular remodelling after acute myocardial infarction[J]. Int J Mol Sci,2014,15(4):5774-5788.
[38] 彭子健. 外泌体生物学特性及其miRNAs治疗心肌梗死的研究进展[J].心血管病学进展, 2018,39(6):1035-1038.
相似文献/References:
[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(3):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(3):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(3):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(3):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(3):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]李思瑶 钟江华.MicroRNA与心房颤动关系的研究进展[J].心血管病学进展,2020,(1):34.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.010]
LI SiyaoZHONG Jianghua.The Relationship Between MicroRNA and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(3):34.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.010]
[7]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(3):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[8]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(3):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[9]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(3):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[10]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]