参考文献/References:
[1].Sahoo S,Losordo DW.Exosomes and cardiac repair after myocardial infarction[J]. Circ Res, 2014,114(2):333-344.
[2].Barwari T,Joshi A,Mayr M.MicroRNAs in cardiovascular disease[J]. J Am Coll Cardiol, 2016,68(23):2577-2584.
[3].Barile L,Moccetti T,Marban E,et al.Roles of exosomes in cardioprotection[J]. Eur Heart J, 2017,38(18):1372-1379.
[4].Hsu SD,Lin FM,Wu WY,et al.miRTarBase:a database curates experimentally validated microRNA-target interactions[J]. Nucleic Acids Res, 2011,39(Database issue):D163-169.
[5].Jakob P,Kacprowski T,Briand-Schumacher S,et al.Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction[J]. Eur Heart J, 2017,38(7):511-515.
[6].Jakob P,Doerries C,Briand S,et al.Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity[J]. Circulation, 2012,126(25): 2962-2975.
[7].He F,Liu H,Guo J,et al.Inhibition of microRNA-124 reduces cardiomyocyte apoptosis following myocardial infarction via targeting STAT3[J]. Cell Physiol Biochem,2018, 51(1):186-200.
[8].Zhang Q,Yu N,Yu BT.MicroRNA-298 regulates apoptosis of cardiomyocytes after myocardial infarction[J]. Eur Rev Med Pharmacol Sci, 2018,22(2):532-539.
[9].Wang W,Zheng Y,Wang M,et al.Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1[J]. Gene, 2019,690:75-80.
[10].Wong LL,Zou R,Zhou L,et al.Combining circulating microRNA and NT-proBNP to detect and categorize heart failure subtypes[J].J Am Coll Cardiol,2019,73(11):1300-1313.
[11].Masson S,Batkai S,Beermann J,et al.Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization in patients with chronic heart failure[J]. Eur J Heart Fail,2018,20(1):78-85.
[12].Zhang X,Ji R,Liao X,et al.MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation[J]. Circulation,2018,137(19):2052-2067.
[13].Gao F,Kataoka M,Liu N,et al.Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction[J].Nat Commun, 2019,10(1):1802.
[14].Terentyev D,Belevych AE,Terentyeva R,et al.miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphory lation of RyR2[J]. Circ Res, 2009,104(4):514-521.
[15].Lu Y,Zhang Y,Wang N,et al.MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation, 2010,122(23):2378-2387.
[16].Reilly SN,Liu X,Carnicer R,et al.Up-regulation of miR-31 in human atrial fibrillation begets the arrhythmia by depleting dystrophin and neuronal nitric oxide synthase[J]. Sci Transl Med, 2016,8(340):340-374.
[17].Zhao Y,Yuan Y,Qiu C.Underexpression of CACNA1C caused by overexpression of microRNA-29a underlies the pathogenesis of atrial fibrillation[J]. Med Sci Monit, 2016,22:2175-2181.
[18].Liu K,Hao Q,Wei J,et al.MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A[J]. J Hypertens,2018,36(9):1847-1857.
[19].Li H,Zhang X,Wang F,et al.MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation[J].Circulation, 2016,134(10):734-751.
[20].Mohajeri M,Banach M,Atkin S,et al.MicroRNAs: novel molecular targets and response modulators of statin therapy[J].Trends Pharmacol Sci,2018, 39(11):967-981.
[21].Zhao N,Koenig S.N,Trask A.J,et al.MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells[J]. Circ Res, 2015,116(1):23-34.
[22].Wang Y,Han Z,Fan Y,et al.MicroRNA-9 inhibits NLRP3 inflammasome activation in human atherosclerosis inflammation cell models through the JAK1/STAT signaling pathway[J]. Cell Physiol Biochem, 2017,41(4):1555-1571.
[23].Gu H,Dai Q,Liu Z,et al. Peripartum cardiomyopathy: do exosomes play a role?[J]. Adv Exp Med Biol,2017,998:139-149.
[24].Ruffenach G, Chabot S, Tanguay V,et al. Role for runt-related transcription factor 2 in proliferative and calcified vascular lesions in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2016,194(10):1273-1285.
[25].Li Y,Ren W,Wang X,et al.MicroRNA-150 relieves vascular remodeling and fibrosis in hypoxia-induced pulmonary hypertension[J].Biomed Pharmacother,2019,109:1740-1749.
相似文献/References:
[1]宋菲,综述,俞梦越,等.干细胞来源的外泌体:心肌梗死治疗新启示[J].心血管病学进展,2016,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
SONG Fei,YU Mengyue.Exosomes Derived from Stem Cells: Novel Approach in Treatment of
Myocardial Infarction[J].Advances in Cardiovascular Diseases,2016,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
[2]姚雯,毛露,孙硕,等.心源性外泌体作为冠心病标志物和新靶点展望[J].心血管病学进展,2019,(6):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
YAO Wen,MAO Lu,SUN Shuo,et al.Exogenous Exosome as A New Marker and Target of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(2):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
[3]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(2):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[4]李一凡 张智伟.巨噬细胞相关的外泌体在心血管疾病中的作用研究进展[J].心血管病学进展,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
LI Yifan,ZHANG Zhiwei.Role of Macrophage-Related Exosomes in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(2):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
[5]叶莎 杨翠玲 郑媛媛.骨髓间充质干细胞来源外泌体通过PI3K/Akt途径减轻H2O2诱导心肌细胞损伤[J].心血管病学进展,2022,(3):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
YE Sha,YANG Cuiling,ZHENG Yuanyuan.Bone Marrow Mesenchymal Stem Cells Derived Exosomes Attenuate H 2O2 Induced Cardiomyocyte Injury Via PI3K/Akt Pathway[J].Advances in Cardiovascular Diseases,2022,(2):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[6]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(2):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
[7]俞佳丽 景雨 张剑 陈楚 陆齐 顾周山 陈子微 周大胜 景宏美 潘丽华.间充质干细胞来源的外泌体在心肌梗死治疗中的研究进展[J].心血管病学进展,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
YU JialiJING YuZHANG JianCHEN ChuLU QiGU ZhoushanCHEN ZiweiZHOU DashenJING HongmeiPAN Lihua.Exosomes Derived from Mesenchymal Stem Cells?n the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(2):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
[8]杨珂欣 李星辉 肖晨朦 姚晓涛 林萌 蔡佳.间充质干细胞来源外泌体改善心肌纤维化的研究进展[J].心血管病学进展,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
YANG Kexin LI Xinghui XIAO ChenmengYAO XiaotaoLIN MengCAI Jia.Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell[J].Advances in Cardiovascular Diseases,2022,(2):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
[9]陈鹏莉 宋紫微 张曼玉 李丽丽.干细胞来源外泌体miRNA介导心脏修复的研究进展[J].心血管病学进展,2023,(7):636.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.014]
CHEN Pengli,SONG Ziwei,ZHANG Manyu,et al.Exosomal miRNA Derived from Stem Cells in Mediating Cardiac Repair[J].Advances in Cardiovascular Diseases,2023,(2):636.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.014]
[10]杨安妮 厉腊梅 王绿娅 蔡高军.外泌体与脂质代谢研究进展[J].心血管病学进展,2024,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.017]
YANG Anni,LI Lamei,WANG Lyuya,et al.Research Progress on Exosomes and Lipid Metabolism[J].Advances in Cardiovascular Diseases,2024,(2):753.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.017]