[1]杨伟 段显凤 陈章荣.泛素蛋白酶体抑制剂MG-132与心力衰竭[J].心血管病学进展,2020,(1):60-62.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.016]
 YANG Wei,DUAN Xianfeng,CHEN Zhangrong.Ubiquitin Proteasome Inhibitor MG-132 and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(1):60-62.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.016]
点击复制

泛素蛋白酶体抑制剂MG-132与心力衰竭()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年1期
页码:
60-62
栏目:
出版日期:
2020-02-04

文章信息/Info

Title:
Ubiquitin Proteasome Inhibitor MG-132 and Heart Failure
作者:
杨伟 段显凤 陈章荣
(大理大学第一附属医院心内科,云南 大理 671000)
Author(s):
YANG Wei DUAN Xianfeng CHEN Zhangrong
(The First Affiliated Hospital of Dali University,Dali 671000,Yunnan,China)
关键词:
心力衰竭MG-132泛素蛋白酶体系统
Keywords:
Heart failure MG-132 Ubiquitin proteasome system
DOI:
10.16806/j.cnki.issn.1004-3934.2020.01.016
摘要:
心力衰竭是各种心脏疾病发展的严重阶段,发病率的上升是心血管医学面临的最大挑战之一,已成为心脏病治疗的最后战场。MG-132是一种泛素蛋白酶体抑制剂,其在心力衰竭发展过程中扮演重要的角色,但其具体作用尚未完全阐明。现综述MG-132与心力衰竭关系及相关分子机制。
Abstract:
Heart failure is a serious stage of the development of various heart diseases. The rising incidence of heart failure is one of the biggest challenges facing cardiovascular medicine,and it has become the final battleground for heart disease treatment. MG-132 is a ubiquitin proteasome inhibitor,which plays an important role in the development of heart failure,but its specific role has not been fully clarified. This article reviews the relationship between MG-132 and heart failure and its molecular mechanism.

参考文献/References:

[1]张健,王运红. 心力衰竭药物治疗的新进展[J]. 中国循环杂志,2016,31(2):105-107.
[2]Barac YD,Emrich F,Krutzwakd-Josefson E,et al. The ubiquitin-proteasome system:a potential therapeutic target for heart failure[J]. J Heart Lung Transplant,2017,36(7):708-714.
[3]Koulaouzidis G,Lyon AR. Proteasome inhibitors as a potential cause of heart failure[J]. Heart Fail Clin,2017,13(2):289-295.
[4]王灵冰,滕欣越,张瑞,等. 慢性心力衰竭与血管紧张素Ⅱ相关性分子机制研究进展[J]. 心血管病学进展,2018,39(6):95-98.
[5]戴翠莲,姜黔峰,张赟. 蛋白酶体抑制剂MG-132对心肌梗死后心衰大鼠心功能及心肌肌钙蛋白Ⅰ的影响[J]. 第三军医大学学报,2011,33(1):45-49.
[6]Ma Y,Chen B,Liu D,et al. MG132 treatment attenuates cardiac remodeling and dysfunction following aortic banding in rats via the NF-κB/TGFβ1 pathway[J]. Biochem Pharmacol,2011,81(10):1228-1236.
[7]Michela P,Velia V,Aldo P,et al. Role of connexin 43 in cardiovascular diseases[J]. Eur J Pharmacol,2015,768:71-76.
[8]张昊文,刘胜洪,全小庆,等. 缝隙连接与心血管疾病[J]. 中国组织化学与细胞化学杂志,2014,23(2):204-207.
[9]Chen G,Zhao J,Liu C,et al. MG132 proteasome inhibitor upregulates the expression of connexin 43 in rats with adriamycin-induced heart failure[J]. Mol Med Rep,2015,12(5):7595-7602.
[10]Yang K,Zhang TP,Tian C,et al. Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensinⅡ-induced cardiac remodeling[J]. Am J Hypertens,2012,25(9):994-1001.
[11] Preedy VR,Patel VB. General Methods in Biomarker Research and their Applications[M]. Springer Reference,2015: 757-781.
[12]van der Mheen M,van Beynum IM,Dulfer K,et al. The CHIP-Family study to improve the psychosocial wellbeing of young children with congenital heart disease and their families:design of a randomized controlled trial[J]. BMC Pediatr,2018,18(1):230.
[13]Ranek MJ,Stachowski MJ,Kirk JA,et al. The role of heat shock proteins and co-chaperones in heart failure[J]. Philos Trans R Soc Lond B Biol Sci,2018,373(1738).pii: 20160530.
[14]Bayeva M,Gheorghiade M,Ardehali H. Mitochondria as a therapeutic target in heart failure[J]. J Am Coll Cardiol,2013,61(6):599-610.
[15]Li Z,Song Y,Xing R,et al. Heat shock protein 70 acts as a potential biomarker for early diagnosis of heart failure[J]. PLoS One,2013,8(7):e67964.
[16]张新民, 戴翠莲, 唐疾飞,等. 蛋白酶体抑制剂MG-132对心肌梗死大鼠早期心功能及热休克蛋白70、热休克蛋白70羧基端相互作用蛋白的影响[J]. 中国临床药理学与治疗学,2010,15(7):747-752.
[17]Li CY,Zhou Q,Yang LC,et al. Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway[J]. Basic Res Cardiol,2016,111(2):19.
[18]Arabacilar P,Marber M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure[J]. Front Pharmacol,2015,6:102.
[19]Wu X,Chen Z,Yang Y,et al. Impact of proteasome inhibitor MG-132 on expression of NF-κB,IL-1beta and histological remodeling after myocardial infarction[J]. Exp Ther Med,2018,16(2):1365-1372.
[20]Cui J,Zhang F,Wang Y,et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways[J]. IInt J Mol Med,2016,37(5):1299-1309.
[21]He SF,Jin SY,Wu H,et al. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt[J]. Toxicol Appl Pharmacol,2015,288(3):349-358.
[22]Wu L,Mei L,Chong L,et al. Olmesartan ameliorates pressure overload-induced cardiac remodeling through inhibition of TAK1/p38 signaling in mice[J]. Life Sci,2016,145:121-126.
[23]Zanotto-Filho A,Braganhol E,Battastini AM,et al. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways,mitochondrial dysfunction,and activation of p38-JNK1/2 signaling[J]. Invest New Drugs,2012,30(6):2252-2262.
[24]张新民,陈鹏,叶盛. MG-132对CVB3病毒性心肌炎小鼠心肌细胞凋亡因子的作用研究[J]. 中国临床药理学与治疗学,2018,23(5):498-503.
[25]Spaich S,Katus HA,Backs J. Ongoing controversies surrounding cardiac remodeling:is it black and white—or rather fifty shades of gray?[J]. Front Physiol,2015,6:202.
[26]王延博,李宇球,王蓓,等. 心力衰竭炎症标志物研究进展[J]. 心血管病学进展,2018,39(6):115-119.
[27]Xu J,Kimball TR,Lorenz JN,et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation[J]. Circ Res,2006,98(3):342-350.
[28]Cotter G,Voors AA,Prescott MF,et al. Growth differentiation factor 15(GDF‐15) in patients admitted for acute heart failure:results from the RELAX‐AHF study[J]. Eur J Heart Fail,2015,17(11):1133-1143.
[29]Ratnam NM,Peterson JM,Talbert EE,et al. NF-κB regulates GDF-15 to suppress macrophage surveillance during early tumor development[J]. J Clin Invest,2017,127(10):3796-3809.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(1):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(1):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(1):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(1):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(1):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(1):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
 WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]

备注/Memo

备注/Memo:
基金项目:云南省教育厅科研项目(2019J0766)
更新日期/Last Update: 2020-03-24