参考文献/References:
[1]张健,王运红. 心力衰竭药物治疗的新进展[J]. 中国循环杂志,2016,31(2):105-107.
[2]Barac YD,Emrich F,Krutzwakd-Josefson E,et al. The ubiquitin-proteasome system:a potential therapeutic target for heart failure[J]. J Heart Lung Transplant,2017,36(7):708-714.
[3]Koulaouzidis G,Lyon AR. Proteasome inhibitors as a potential cause of heart failure[J]. Heart Fail Clin,2017,13(2):289-295.
[4]王灵冰,滕欣越,张瑞,等. 慢性心力衰竭与血管紧张素Ⅱ相关性分子机制研究进展[J]. 心血管病学进展,2018,39(6):95-98.
[5]戴翠莲,姜黔峰,张赟. 蛋白酶体抑制剂MG-132对心肌梗死后心衰大鼠心功能及心肌肌钙蛋白Ⅰ的影响[J]. 第三军医大学学报,2011,33(1):45-49.
[6]Ma Y,Chen B,Liu D,et al. MG132 treatment attenuates cardiac remodeling and dysfunction following aortic banding in rats via the NF-κB/TGFβ1 pathway[J]. Biochem Pharmacol,2011,81(10):1228-1236.
[7]Michela P,Velia V,Aldo P,et al. Role of connexin 43 in cardiovascular diseases[J]. Eur J Pharmacol,2015,768:71-76.
[8]张昊文,刘胜洪,全小庆,等. 缝隙连接与心血管疾病[J]. 中国组织化学与细胞化学杂志,2014,23(2):204-207.
[9]Chen G,Zhao J,Liu C,et al. MG132 proteasome inhibitor upregulates the expression of connexin 43 in rats with adriamycin-induced heart failure[J]. Mol Med Rep,2015,12(5):7595-7602.
[10]Yang K,Zhang TP,Tian C,et al. Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensinⅡ-induced cardiac remodeling[J]. Am J Hypertens,2012,25(9):994-1001.
[11] Preedy VR,Patel VB. General Methods in Biomarker Research and their Applications[M]. Springer Reference,2015: 757-781.
[12]van der Mheen M,van Beynum IM,Dulfer K,et al. The CHIP-Family study to improve the psychosocial wellbeing of young children with congenital heart disease and their families:design of a randomized controlled trial[J]. BMC Pediatr,2018,18(1):230.
[13]Ranek MJ,Stachowski MJ,Kirk JA,et al. The role of heat shock proteins and co-chaperones in heart failure[J]. Philos Trans R Soc Lond B Biol Sci,2018,373(1738).pii: 20160530.
[14]Bayeva M,Gheorghiade M,Ardehali H. Mitochondria as a therapeutic target in heart failure[J]. J Am Coll Cardiol,2013,61(6):599-610.
[15]Li Z,Song Y,Xing R,et al. Heat shock protein 70 acts as a potential biomarker for early diagnosis of heart failure[J]. PLoS One,2013,8(7):e67964.
[16]张新民, 戴翠莲, 唐疾飞,等. 蛋白酶体抑制剂MG-132对心肌梗死大鼠早期心功能及热休克蛋白70、热休克蛋白70羧基端相互作用蛋白的影响[J]. 中国临床药理学与治疗学,2010,15(7):747-752.
[17]Li CY,Zhou Q,Yang LC,et al. Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway[J]. Basic Res Cardiol,2016,111(2):19.
[18]Arabacilar P,Marber M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure[J]. Front Pharmacol,2015,6:102.
[19]Wu X,Chen Z,Yang Y,et al. Impact of proteasome inhibitor MG-132 on expression of NF-κB,IL-1beta and histological remodeling after myocardial infarction[J]. Exp Ther Med,2018,16(2):1365-1372.
[20]Cui J,Zhang F,Wang Y,et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways[J]. IInt J Mol Med,2016,37(5):1299-1309.
[21]He SF,Jin SY,Wu H,et al. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt[J]. Toxicol Appl Pharmacol,2015,288(3):349-358.
[22]Wu L,Mei L,Chong L,et al. Olmesartan ameliorates pressure overload-induced cardiac remodeling through inhibition of TAK1/p38 signaling in mice[J]. Life Sci,2016,145:121-126.
[23]Zanotto-Filho A,Braganhol E,Battastini AM,et al. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways,mitochondrial dysfunction,and activation of p38-JNK1/2 signaling[J]. Invest New Drugs,2012,30(6):2252-2262.
[24]张新民,陈鹏,叶盛. MG-132对CVB3病毒性心肌炎小鼠心肌细胞凋亡因子的作用研究[J]. 中国临床药理学与治疗学,2018,23(5):498-503.
[25]Spaich S,Katus HA,Backs J. Ongoing controversies surrounding cardiac remodeling:is it black and white—or rather fifty shades of gray?[J]. Front Physiol,2015,6:202.
[26]王延博,李宇球,王蓓,等. 心力衰竭炎症标志物研究进展[J]. 心血管病学进展,2018,39(6):115-119.
[27]Xu J,Kimball TR,Lorenz JN,et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation[J]. Circ Res,2006,98(3):342-350.
[28]Cotter G,Voors AA,Prescott MF,et al. Growth differentiation factor 15(GDF‐15) in patients admitted for acute heart failure:results from the RELAX‐AHF study[J]. Eur J Heart Fail,2015,17(11):1133-1143.
[29]Ratnam NM,Peterson JM,Talbert EE,et al. NF-κB regulates GDF-15 to suppress macrophage surveillance during early tumor development[J]. J Clin Invest,2017,127(10):3796-3809.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(1):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(1):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(1):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(1):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(1):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(1):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(1):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]