参考文献/References:
[1] Tanai E, Frantz S. Pathophysiology of Heart Failure[J]. Compr Physiol, 2015, 6(1): 187-214.
[2] Ponikowski P, Voors A A, Anker S D, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC[J]. Eur J Heart Fail, 2016, 18(8): 891-975.
[3] Unnikrishnan R, Pradeepa R, Joshi S R, et al. Type 2 diabetes: demystifying the global epidemic[J]. Diabetes, 2017, 66(6):1432-1442.
[4] Garcia-Ropero A, Badimon JJ, Santos- Gallego CG. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments[J]. Expert Opin Drug Metab Toxicol,2018,14(12):1287-1302.
[5] Thomas M C. Type 2 diabetes and heart failure: challenges and solutions[J]. Curr Cardiol Rev, 2016,12(3):249-255.
[6] Pandey J, Tamrakar A K. SGLT2 inhibitors for the treatment of diabetes: a patent review (2013-2018)[J]. Expert Opin Ther Pat, 2019 ,29(5):369-384.
[7] 王建平,朱巧林.钠-葡萄糖协同转运蛋白2抑制剂与糖尿病心血管并发症研究进展[J].中南医学科学杂志,2018,46(06):561-566.
[8] Storgaard H, Gluud LL, Bennett C, et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes:a systematic review and meta-analysis[J]. PLoS One,2016,11(11): e0166125.
[9] Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22): 2117-2128.
[10] Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(7): 644-657.
[11] Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380(4): 347-357.
[12] Kato ET, Silverman MG, Mosenzon O, et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus[J]. Circulation, 2019 ,139(22):2528-2536.
[13] Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors)[J]. Circulation, 2017,136(3): 249-259.
[14] Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study[J]. J Am Coll Cardiol, 2018, 71(23): 2628-2639.
[15] Udell JA, Yuan Z, Rush T, et al. Cardiovascular outcomes and risks after initiation of a sodium glucose cotransporter 2 inhibitor: results from the EASEL population-based cohort study (evidence for cardiovascular outcomes with sodium glucose cotransporter 2 inhibitors in the real world)[J]. Circulation,2018,137(14): 1450-1459.
[16] Seferovic PM, Ponikowski P, Anker SD, et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of The Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2019 ,21(10):1169-1186.
[17] Mcmurray JJV, Demets DL, Inzucchi SE, et al. A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF)[J]. Eur J Heart Fail, 2019, 21(5): 665-675.
[18] Pintat S, Fenici P, Hammar N, et al. Eligibility of patients with type 2 diabetes for sodium-glucose cotransporter 2 inhibitor cardiovascular outcomes trials: a global perspective from the DISCOVER study[J]. BMJ Open Diabetes Res Care, 2019, 7(1): e000627.
[19] Polak-Iwaniuk A, Harasim-Symbor E, Golaszewska K, et al. How Hypertension Affects Heart Metabolism[J]. Front Physiol, 2019, 10: 435.
[20] Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters[J]. Cardiovasc Res,2017,113(4): 411-421.
[21] van Bommel EJ, Muskiet MH, Tonneijck L, et al. SGLT2 Inhibition in the Diabetic Kidney-From Mechanisms to Clinical Outcome[J]. Clin J Am Soc Nephrol, 2017, 12(4): 700-710.
[22] Singh AK, Unnikrishnan AG, Zargar AH, et al. Evidence-based consensus on positioning of SGLT2i in type 2 diabetes mellitus in indians[J]. Diabetes Ther, 2019, 10(2): 393-428.
[23] Reed JW. Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure[J]. Vasc Health Risk Manag, 2016, 12: 393-405.
[24] Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease[J]. Diabetologia, 2018, 61(1): 21-28.
[25] Lehrke M. SGLT2 inhibition: changing what fuels the heart[J]. J Am Coll Cardiol, 2019, 73(15): 1945-1947.
[26] Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? a unifying hypothesis[J]. Diabetes Care, 2016, 39(7): 1115-1122.
[27] Gormsen LC, Svart M, Thomsen HH, et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study[J]. J Am Heart Assoc, 2017, 6(3). pii: e005066.
[28] Holscher ME, Bode C, Bugger H. Diabetic cardiomyopathy: does the type of diabetes matter?[J]. Int J Mol Sci, 2016,17(12).pii: E2136.
[29] Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J]. Free Radic Biol Med, 2017, 104: 298-310.
[30] Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation[J]. Diabetologia, 2018, 61(3): 722-726.
[31] Baartscheer A, Schumacher CA, Wust RC, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits[J]. Diabetologia, 2017, 60(3): 568-573.
[32] Lee TI, Chen YC, Lin YK, et al. Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats[J]. Int J Mol Sci, 2019, 20(7).pii: E1680.
[33] Packer M. Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure[J]. Circulation, 2017, 136(16): 1548-1559.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(2):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(2):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(2):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(2):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(2):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[6]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on
Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(2):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[7]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[8]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(2):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[9]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[10]吴彤 高东来.心房颤动合并心力衰竭的射频消融治疗[J].心血管病学进展,2019,(5):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]
WU TongGAO Donglai.Catheter Ablation of Atrial Fibrillation in Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2019,(2):757.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.023]