参考文献/References:
[1] Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus:is it really the first marker of diabetic cardiomyopathy?[J]. J Am Soc Echocardiogr,2011,24(11):1268-1275.
[2] Yang L, Zhao D, Ren J, et al. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy[J]. Biochim Biophys Acta,2015,1852(2):209-218.
[3] Palomer X, Capdevila-Busquets E, Botteri G, et al. PPARbeta/delta attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells[J]. Int J Cardiol,2014,174(1):110-118.
[4] Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis[J]. EMBO Rep,2006,7(9):880-885.
[5] Guerrero-Hernandez A, Leon-Aparicio D, Chavez-Reyes J, et al. Endoplasmic reticulum stress in insulin resistance and diabetes[J].Cell Calcium,2014,56(5):311-322.
[6] Zarain-Herzberg A, Garcia-Rivas G, Estrada-Aviles R. Regulation of SERCA pumps expression in diabetes[J]. Cell Calcium,2014,56(5):302-310.
[7] Zhang K. Integration of ER stress, oxidative stress and the inflammatory response in health and disease[J]. Int J Clin Exp Med,2010,3(1):33-40.
[8] Lipskaia L, Keuylian Z, Blirando K, et al. Expression of sarco(endo)plasmic reticulum calcium ATPase(SERCA)system in normal mouse cardiovascular tissues, heart failure and atherosclerosis[J]. Biochim Biophys Acta,2014,1843(11):2705-2718.
[9] Liu XH, Zhang ZY, Andersson KB, et al. Cardiomyocyte-specific disruption of Serca2 in adult mice causes sarco(endo)plasmic reticulum stress and apoptosis[J]. Cell Calcium,2011,49(4):201-207.
[10] Kalyanasundaram A, Lacombe VA, Belevych AE, et al.Up-regulation of sarcoplasmic reticulum Ca(2+)uptake leads to cardiac hypertrophy, contractile dysfunction and early mortality in mice deficient in CASQ2[J]. Cardiovasc Res,2013,98(2):297-306.
[11] Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes[J]. Science,2004,306(5695):457-461.
[12] Li Z, Zhang T, Dai H, et al. Endoplasmic reticulum stress is involved in myocardial apoptosis of streptozocin-induced diabetic rats[J]. J Endocrinol,2008,196(3):565-572.
[13] Lakshmanan AP, Harima M, Suzuki K, et al. The hyperglycemia stimulated myocardial endoplasmic reticulum(ER)stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats:a differential role of unfolded protein response(UPR)signaling proteins[J]. Int J Biochem Cell Biol,2013,45(2):438-447.
[14] Liu ZW, Zhu HT, Chen KL, et al. Protein kinase RNA-like endoplasmic reticulum kinase(PERK)signaling pathway plays a major role in reactive oxygen species(ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy[J]. Cardiovasc Diabetol,2013,12:158.
[15] Takada A, Miki T, Kuno A, et al. Role of ER stress in ventricular contractile dysfunction in type 2 diabetes[J]. PLoS One,2012,7(6):e39893.
[16] Sheikh AQ, Hurley JR, Huang W, et al. Diabetes alters intracellular calcium transients in cardiac endothelial cells[J]. PLoS One,2012,7(5):e36840.
[17] Zhao SM, Wang YL, Guo CY, et al. Progressive decay of Ca2+ homeostasis in the development of diabetic cardiomyopathy[J]. Cardiovasc Diabetol,2014,13:75.
[18] Frey N, Mckinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function[J]. Nat Med,2000,6(11):1221-1227.
[19] Shi FH, Cheng YS, Dai DZ, et al. Depressed calcium-handling proteins due to endoplasmic reticulum stress and apoptosis in the diabetic heart are attenuated by argirein[J]. Naunyn Schmiedebergs Arch Pharmacol,2013,386(6):521-531.
[20] Xu J, Zhou Q, Xu W, et al. Endoplasmic reticulum stress and diabetic cardiomyopathy[J]. Exp Diabetes Res,2012,2012:827971.
[21] Cordero-Reyes AM, Youker K, Estep JD, et al. Molecular and cellular correlates of cardiac function in end-stage DCM: a study using speckle tracking echocardiography[J]. JACC Cardiovasc Imaging,2014,7(5):441-452.
[22] Zarain-Herzberg A, Garcia-Rivas G, Estrada-Aviles R. Regulation of SERCA pumps expression in diabetes[J]. Cell Calcium,2014,56(5):302-310.
[23] Kranstuber AL, Del RC, Biesiadecki BJ, et al. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling[J]. Front Physiol,2012,3:292.
[24] Wu T, Dong Z, Geng J, et al. Valsartan protects against ER stress-induced myocardial apoptosis via CHOP/Puma signaling pathway in streptozotocin-induced diabetic rats[J]. Eur J Pharm Sci,2011,42(5):496-502.
[25] Noyan-Ashraf MH, Shikatani EA, Schuiki I, et al. A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity[J]. Circulation,2013,127(1):74-85.
[26] Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a[J].Am J Physiol Cell Physiol,2013,304(6):C508-C518.
[27] Xu J, Wang G, Wang Y, et al. Diabetes- and angiotensin Ⅱ-induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection[J]. J Cell Mol Med,2009,13(8A):1499-1512.
[28] Barr LA, Shimizu Y, Lambert JP, et al. Hydrogen sulfide attenuates high fat diet-induced cardiac dysfunction via the suppression of endoplasmic reticulum stress[J]. Nitric Oxide,2015,46:145-156.
[29] Zhang X, Ma X, Zhao M, et al. H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes[J]. Biochimie,2015,108:59-67.
[30] Wang M, Zhang WB, Zhu JH, et al. Breviscapine ameliorates cardiac dysfunction and regulates the myocardial Ca(2+)-cycling proteins in streptozotocin-induced diabetic rats[J]. Acta Diabetol,2010,47(Suppl 1):209-218.
[31] 李梦,戴德哉,于锋,等. 糖尿病心肌病的内质网病变机制及六味地黄汤的治疗作用[J].中药药理与临床,2013,29(2):196-198.
[32] Shida T, Nozawa T, Sobajima M, et al. Fluvastatin-induced reduction of oxidative stress ameliorates diabetic cardiomyopathy in association with improving coronary microvasculature[J]. Heart Vessels,2014,29(4):532-541.
相似文献/References:
[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes
of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(6):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(6):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[4]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(6):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[5]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(6):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[6]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(6):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[7]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(6):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[8]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(6):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[9]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(6):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
[10]王一硕 罗皓文 王晨旭 孙路轩 阿如汗 张茵 常盼.线粒体动力学在糖尿病心肌病中的研究进展[J].心血管病学进展,2023,(12):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]
WANG Yishuo LUO Haowen WANG Chenxu SUN Luxuan AruhanZHANG Yin CHANG Pan.Mitochondrial Dynamics in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(6):1111.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.013]