[1]潘乐 汪翔 龚惠.单细胞测序在心血管系统中的应用[J].心血管病学进展,2020,(12):1227-1230.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.001]
 PAN Le,WANG Xiang,GONG Hui.Application of single cell sequencing in cardiovascular system[J].Advances in Cardiovascular Diseases,2020,(12):1227-1230.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.001]
点击复制

单细胞测序在心血管系统中的应用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年12期
页码:
1227-1230
栏目:
综述
出版日期:
2020-12-25

文章信息/Info

Title:
Application of single cell sequencing in cardiovascular system
作者:
潘乐 汪翔 龚惠
(上海市中山医院心血管病研究所 复旦大学生物医学研究所,上海 200030)
Author(s):
PAN Le WANG XiangGONG Hui
(Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital,and Institutes of Biomedical Sciences,Fudan University,Shanghai 200032,China)
关键词:
单细胞RNA测序 心脏细胞 心血管疾病
Keywords:
single-cell RNA sequencing Heart cells Cardiovascular disease
DOI:
10.16806/j.cnki.issn.1004-3934.2020.12.001
摘要:
近十年,高通量测序技术高速发展,特别是在单细胞转录组学领域。单细胞测序是从单个细胞的水平检测基因表达信息,从而可以揭示那些原本在组织样本测序中被掩盖的信息,这一新兴测序技术在各个领域都有着广阔的应用前景,特别是在肿瘤,免疫等领域,是近年来迅速兴起的一项技术。单细胞测序可以区分不同的细胞类型及其亚型,了解其基因表达,这一新兴技术在心脏发育和疾病模型的探索中已得到广泛的应用。现就聚焦单细胞测序技术的发展及其在心血管领域的应用的前景做一综述。
Abstract:
In the last decadehigh-throughput sequencing technologies have developed rapidly,especially in the field of single-cell transcriptomics. Single-cell RNA sequencing (scRNA-seq) detects gene expression information at the level of a single cell,thus revealing information that would otherwise be obscured in tissue sample sequencing. This new sequencing technology has a good application prospect in various fields,especially in tumor,immunity and other fields. It has developed rapidly in recent years. scRNA-seq can distinguish between different cell types and their subtypes to understand their gene expression,thus,this emerging technology that has been widely used in the exploration of models of heart development and disease. This article will focus on the development of single-cell transcriptomics and its application in the cardiovascular field.

参考文献/References:

[1] Mackay IM,Arden KE,Nitsche A. Real-time PCR in virology [J]. Nucleic Acids Res,2002,30(6):1292-1305.
[2] Wagner A,Regev A,Yosef N. Revealing the vectors of cellular identity with single-cell genomics [J]. Nat Biotechnol,2016,34(11):1145-1160.
[3] Potter SS. Single-cell RNA sequencing for the study of development,physiology and disease [J]. Nat Rev Nephrol,2018,14(8):479-492.
[4] Skelly DA,Squiers GT,Mclellan MA,et al. Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart [J]. Cell Rep,2018,22(3):600-610.
[5] Asp M,Giacomello S,Larsson L,et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart [J]. Cell,2019,179(7):1647-1660.
[6] Grün D,van Oudenaarden A. Design and Analysis of Single-Cell Sequencing Experiments [J]. Cell,2015,163(4):799-810.
[7] Williams JW,Winkels H,Durant CP,et al. Single Cell RNA Sequencing in Atherosclerosis Research [J]. Circ Res,2020,126(9):1112-1126.
[8] Ackers-Johnson M,Tan WLW,Foo RS . Following hearts,one cell at a time: recent applications of single-cell RNA sequencing to the understanding of heart disease [J]. Nat Commun,2018,9(1):4434
[9] Kannan S,Miyamoto M,Lin BL,et al. Large Particle Fluorescence-Activated Cell Sorting Enables High-Quality Single-Cell RNA Sequencing and Functional Analysis of Adult Cardiomyocytes [J]. Circ Res,2019,125(5):567-569.
[10] Skinnider MA,Squair JW,Foster LJ. Evaluating measures of association for single-cell transcriptomics [J]. Nat Methods,2019,16(5):381-386.
[11] Hwang B,Lee JH,Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines [J]. Exp Mol Med,2018,50(8):96.
[12] Wu Y,Zhang K. Tools for the analysis of high-dimensional single-cell RNA sequencing data [J]. Nat Rev Nephrol,2020,16(7):408-421.
[13] Kokkinopoulos I,Ishida H,Saba R,et al. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo [J]. Plos One,2015,10(10):e0140831.
[14] Delaughter DM,Bick AG,Wakimoto H,et al. Single-Cell Resolution of Temporal Gene Expression during Heart Development [J]. Dev Cell,2016,39(4):480-490.
[15] Li G,Tian L,Goodyer W,et al. Single cell expression analysis reveals anatomical and cell cycle-dependent transcriptional shifts during heart development [J]. Development,2019,146(12):dev173476.
[16] Lescroart F,Wang X,Lin X,et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq [J]. Science,2018,359(6380):1177-1181.
[17] Jia G,Preussner J,Chen X,et al. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement [J]. Nat Commun,2018,9(1):4877
[18] Xiong H,Luo Y,Yue Y,et al. Single-Cell Transcriptomics Reveals Chemotaxis-Mediated Intraorgan Crosstalk During Cardiogenesis [J]. Circ Res,2019,125(4):398-410.
[19] Wang W,Niu X,Stuart T,et al. A single-cell transcriptional roadmap for cardiopharyngeal fate diversification [J]. Nat Cell Biol,2019,21(6):674-686.
[20] De Soysa TY,Ranade SS,Okawa S,et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects [J]. Nature,2019,572(7767):120-124.
[21] Gladka MM,Molenaar B,de Ruiter H,et al. Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of Fibroblasts Activation [J]. Circulation,2018,138(2):166-180.
[22] Nomura S,Satoh M,Fujita T,et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure [J]. Nat Commun,2018,9(1):4435
[23] Hu P,Liu J,Zhao J,et al. Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts [J]. Genes Dev,2018,32(19-20):1344-1357.
[24] Goodyer WR,Beyersdorf BM,Paik DT,et al. Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution [J]. Circ Res,2019,125(4):379-397.
[25] Li Z,Solomonidis EG,Meloni M,et al. Single-cell transcriptome analyses reveal novel targetsmodulating cardiac neovascularization by resident endothelial cells following myocardial infarction [J]. Eur Heart J,2019,40(30):2507-2520.
[26] Paik DT,Rai M,Ryzhov S,et al. Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis [J]. Circ Res,2015,117(9):804-816.
[27] See K,Tan WLW,Lim EH,et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo[J]. Nat Commun,2017,8(1):225
[28] Ren Z,Yu P,Li D,et al. Single-Cell Reconstruction of Progression Trajectory Reveals Intervention Principles in Pathological Cardiac Hypertrophy[J]. Circulation,2020,141(21):1704-1719
[29] Friedman CE,Nguyen Q,Lukowski SW,et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation[J]. Cell Stem Cell,2018,23(4):586-598.
[30] Churko JM,Garg P,Treutlein B,et al. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis[J]. Nat Commun,2018,9(1):4906
[31] Gu M,Shao NY,Sa S,et al. Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers[J]. Cell Stem Cell,2017,20(4):490-504.
[32] Paik DT,Tian L,Lee J,et al. Large-scale single-cell RNA-seq reveals molecular signatures of heterogeneous populations of human induced pluripotent stem cell-derived endothelial cells[J]. Circ Res,2018,123(4):443-450.

备注/Memo

备注/Memo:
基金项目:国家基金面上项目(81770239)
通讯作者:潘乐, E-mail:19211210014@fudan.edu.cn
收稿日期:2020-06-09
更新日期/Last Update: 2021-02-22