参考文献/References:
[1] Mahmoud S,Gharagozloo M,Simard C,et al. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release[J]. Cells,2019,8(2):184.
[2] Reiner A,Levitz J. Glutamatergic signaling in the central nervous system:ionotropic and metabotropic receptors in concert[J]. Neuron,2018,98(6):1080-1098.
[3] Wollmuth L. Structure and gating of the glutamate receptor ion channel[J]. Trends Neurosci,2004,27(6):321-328.
[4] Reilly S,Nattel S. Finding a new job:glutamate signaling acts in atrial cardiomyocytes[J]. Cell Res,2021,31(9):943-944.
[5] Furukawa H,Singh SK,Mancusso R,et al. Subunit arrangement and function in NMDA receptors[J]. Nature,2005,438(7065):185-192.
[6] Park DK,Stein IS,Zito K. Ion flux-independent NMDA receptor signaling[J]. Neuropharmacology,2022,210:109019.
[7] Provenzano F,Torazza C,Bonifacino T,et al. The key role of astrocytes in amyotrophic lateral sclerosis and their commitment to glutamate excitotoxicity[J]. Int J Mol Sci,2023,24(20):15430.
[8] Salzinger A,Ramesh V,Das Sharma S,et al. Neuronal circuit dysfunction in amyotrophic lateral sclerosis[J]. Cells,2024,13(10):792.
[9] Bowie D. The many faces of the AMPA-type ionotropic glutamate receptor[J]. Neuropharmacology,2022,208:108975.
[10] Filippini A,Bonini D,La Via L,et al. The good and the bad of glutamate receptor RNA editing[J]. Mol Neurobiol,2017,54(9),6795-6805.
[11] Khanra N,Brown PM,Perozzo A. M,et al. Architecture and structural dynamics of the heteromeric Gluk2/K5 kainate receptor[J]. Elife,2021,10:e66097.
[12] Goo MS,Scudder SL,Patrick GN. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors[J]. Front Mol Neurosci,2015,8:60.
[13] Purkey AM,Dell’Acqua ML. Phosphorylation-dependent regulation of Ca2+-permeable AMPA receptors during hippocampal synaptic plasticity[J]. Front Synaptic Neurosci,2020,12:8.
[14] Diering GH,Huganir RL. The AMPA receptor code of synaptic plasticity[J]. Neuron,2018,100(2):314-329.
[15] Soda T,Brunetti V,Berra-Romani R,et al. The emerging role of N-methyl-D-aspartate (NMDA)receptors in the cardiovascular system:physiological implications,pathological consequences,and therapeutic perspectives[J]. Int J Mol Sci,2023,24(4):3914.
[16] Schmitt N,Grunnet M,Olesen SP. Cardiac potassium channel subtypes:new roles in repolarization and arrhythmia[J]. Physiol Rev,2014,94(2):609-653.
[17] Shi S,Liu T,Wang D,et al. Activation of N-methyl-D-aspartate receptors reduces heart rate variability and facilitates atrial fibrillation in rats[J]. Europace,2017,19(7):1237-1243.
[18] Liu X,Shi S,Yang H,et al. The activation of N-methyl-D-aspartate receptors downregulates transient outward potassium and L-type calcium currents in rat models of depression[J]. Am J Physiol Cell Physiol,2017,313(2):C187-C196.
[19] Gilbert G,Demydenko K,Dries E,et al. Calcium signaling in cardiomyocyte function[J]. Cold Spring Harb Perspect Biol,2020,12(3):a035428.
[20] Modi JP,Shen W,Menzie-Suderam J,et al. The role of NMDA receptor partial antagonist,carbamathione,as a therapeutic agent for transient global ischemia[J]. Biomedicines,2023,11(7):1885.
[21] Liao W,Wen Y,Yang S,et al. Research progress and perspectives of N-methyl-D-aspartate receptor in myocardial and cerebral ischemia-reperfusion injury:a review[J].Medicine (Baltimore),2023,102(42):e35490.
[22] Govoruskina N,Jakovljevic V,Zivkovic V,et al. The role of cardiac N-methyl-D-aspartate receptors in heart conditioning—Effects on heart function and oxidative stress[J]. Biomolecules,2020,10(7):1065.
[23] Jannesar K,Abbaszadeh S,Malekinejad H,et al. Cardioprotective effects of memantine in myocardial ischemia:ex vivo and in vivo studies[J]. Eur J Pharmacol,2020,882:173277.
[24] Nesterov SV,Skorobogatova YA,Panteleeva AA,et al. NMDA and GABA receptor presence in rat heart mitochondria[J]. Chem Biol Interact,2018,291:40-46.
[25] Liu ZY,Hu S,Zhong QW,et al. N-methyl-D-aspartate receptor (NMDAR)-driven calcium influx potentiates the adverse effects of myocardial ischemia-reperfusion injury ex vivo[J]. J Cardiovasc Pharmacol,2017:329-338.
[26] Wang Y,He L,Du D,et al. A metabolomics-based study on NMDAR-mediated mitochondrial damage through calcium overload and ROS accumulation in myocardial infarction[J]. Front Biosci(Landmark Ed),2023,28(7):140.
[27] Gospodarczyk A,Marczewski K,Gospodarczyk N,et al. Homocysteine and cardiovascular disease—A current review[J]. Wiad Lek,2022,75(11 pt 2):2862-2866.
[28] Cheng H,Cheng Q,Bao X,et al. Over-activation of NMDA receptors promotes ABCA1 degradation and foam cell formation[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2020,1865(10):158778.
[29] Liu ZY,Zhong QW,Tian CN,et al. NMDA receptor-driven calcium influx promotes ischemic human cardiomyocyte apoptosis through a p38 MAPK-mediated mechanism[J]. J Cell Biochem,2019,120(4):4872-4882.
[30] Dumas SJ,Bru-Mercier G,Courboulin A,et al. NMDA-type glutamate receptor activation promotes vascular remodeling and pulmonary arterial hypertension[J]. Circulation,2018,137(22):2371-2389.
[31] Seagard JL,Dean C,Hopp FA. Role of glutamate receptors in transmission of vagal cardiac input to neurones in the nucleus tractus solitarii in dogs[J]. J Physio,1999,520(Pt 1):243-253.
[32] Xie D,Xiong K,Su X,et al. Identification of an endogenous glutamatergic transmitter system controlling excitability and conductivity of atrial cardiomyocytes[J]. Cell Res,2021,31(9):951-964.
[33] Melo HM,de Carvalho CR,Hoeller AA,et al. AMPAR GluA1 phosphorylation at serine 845 in limbic system is associated with cardiac autonomic tone[J]. Mol Neurobiol,2021,58(4):1859-1870.
[34] Gallo G,Rubattu S,Volpe M. Mitochondrial dysfunction in heart failure:from pathophysiological mechanisms to therapeutic opportunities[J]. Int J Mol Sci,2024,25(5):2667.
[35] Kawakita F,Nakano F,Kanamaru H,et al. Anti-apoptotic effects of AMPA receptor antagonist perampanel in early brain injury after subarachnoid hemorrhage in mice[J]. Transl Stroke Res,2024,15(2):462-475.
[36] Zou Y,Liu X,Hu Y,et al. Inhibition of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors ameliorates atrial inflammation and vulnerability to atrial fibrillation in rats with anxiety disorders[J]. J Cardiovasc Pharmacol,2024,84(2):227-238.
[37] Li Z,Yu Z,Cui S,et al. AMPA receptor inhibition alleviates inflammatory response and myocardial apoptosis after myocardial infarction by inhibiting TLR4/NF-κB signaling pathway[J]. Int Immunopharmacol,2024,133:112080.
[38] Morrell CN,Sun H,Ikeda M,et al. Glutamate mediates platelet activation through the AMPA receptor[J]. J Exp Med,2008,205(3):575-584.
[39] Liu Y,Zhou L,Xu H. F,et al. A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats[J]. Chin Med J (Engl),2013,126(7):1323-1332.
[40] Herrmann W,Herrmann M. The Controversial role of HCY and vitamin B deficiency in cardiovascular diseases[J]. Nutrients,2022,14(7):1412.
[41] Rastegarmanesh A,Rostami B,Nasimi A,et al. In the parvocellular part of paraventricular nucleus,glutamatergic and GABAergic neurons mediate cardiovascular responses to AngⅡ[J]. Synapse,2023,77(2):e22259.
[42] Zhou X,Yang H,Song X,et al. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension[J]. Hypertens Res,2019,42(8):1142-1151.
[43] Hao Y,Xiong R,Gong X. Memantine,NMDA receptor antagonist,attenuates ox-LDL-induced inflammation and oxidative stress via activation of BDNF/TrkB signaling pathway in HUVECs[J]. Inflammation,2021,44(2):659-670.
[44] Xie D,Xiong K,Su X,et al. Memantine targets glutamate receptors in atrial cardiomyocytes to prevent and treat atrial fibrillation[J]. Cell discovery,2022,8(1):76.
[45] Liu Y,Luo Z,Liao Z,et al. Effects of Excessive activation of N-methyl-D-aspartic acid receptors in neonatal cardiac mitochondrial dysfunction induced by intrauterine hypoxia[J]. Front Cardiovasc Med,2022,9:837142.