[1]段青松 胡厚祥.光蛋白聚糖在钙化性主动脉瓣疾病中的作用机制与潜在治疗靶点的研究进展[J].心血管病学进展,2025,(4):346.[doi:10.16806/j.cnki.issn.1004-3934.2025.04.014]
 DUAN Qingsong,HU Houxiang.Research Progress on the Mechanisms of Lumican in Calcific Aortic Valve Disease and Its Potential Therapeutic Targets[J].Advances in Cardiovascular Diseases,2025,(4):346.[doi:10.16806/j.cnki.issn.1004-3934.2025.04.014]
点击复制

光蛋白聚糖在钙化性主动脉瓣疾病中的作用机制与潜在治疗靶点的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年4期
页码:
346
栏目:
综述
出版日期:
2025-04-25

文章信息/Info

Title:
Research Progress on the Mechanisms of Lumican in Calcific Aortic Valve Disease and Its Potential Therapeutic Targets
作者:
段青松12 胡厚祥 1
(1.川北医学院附属医院心内科,四川 南充 637000;2.广元市第一人民医院心内科,四川 广元 628000)
Author(s):
DUAN Qingsong12HU Houxiang1
(1.Department of Cardiology,Affiliated Hospital of North Sichuan Medical College,Nanchong 637000,Sichuan,China;2.Department of Cardiology,Guangyuan First People’s Hospital,Guangyuan 628000,Sichuan,China)
关键词:
钙化性主动脉瓣疾病光蛋白聚糖细胞外基质重塑
Keywords:
Calcific aortic valve diseaseLumicanExtracellular matrix remodeling
DOI:
10.16806/j.cnki.issn.1004-3934.2025.04.014
摘要:
钙化性主动脉瓣疾病(CAVD)是导致主动脉瓣狭窄的主要原因。CAVD的进展与炎症反应、细胞外基质重塑和钙化等生物学过程密切相关。富含亮氨酸的小蛋白多糖家族成员——重组人光蛋白聚糖在CAVD中的作用近期备受关注。现综述光蛋白聚糖的表达、作用机制及其在CAVD中的促进作用,并探讨其作为潜在治疗靶点的可行性。
Abstract:
Calcific aortic valve disease (CAVD) is a leading cause of aortic valve stenosis. The progression of CAVD is closely associated with biological processes such as inflammation,extracellular matrix remodeling,and calcification. Recently,the role of lumican,a member of the small leucine-rich proteoglycan family,has garnered significant attention in CAVD. This review summarizes the expression and mechanisms of lumican in CAVD and discusses its potential as a therapeutic target

参考文献/References:

[1] Sud K,Narula N,Aikawa E,et al. The contribution of amyloid deposition in the aortic valve to calcification and aortic stenosis[J]. Nat Rev Cardiol,2023,20(6):418-428.

[2] Dong M,W ang L,T se G,et al. Effectiveness and safety of transcatheter aortic valve replacement in elderly?people with severe aortic stenosis with different types of heart failure[J]. BMC Cardiovasc Disord,2023,23(1):34.

[3] Broeders W,Bekkering S,el Messaoudi S,et al. Innate immune cells in the pathophysiology of calcific aortic valve disease:lessons to be learned from atherosclerotic cardiovascular disease?[J]. Basic Res Cardiol,2022,117(1):28.

[4] Ballester-servera C,A lonso J,C a?es L,et al. Lysyl oxidase-dependent extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease[J]. Biomed Pharmacother,2023,167:115469.

[5] Roth GA,M ensah GA,J ohnson CO,et al. Global Burden of Cardiovascular Diseases and Risk Factors,1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol,2020,76(25):2982-3021.

[6] Metra M,R adulescu CI,C ersosimo A,et al. Quality of life in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation:tools and evidence[J]. J Cardiovasc Med (Hagerstown),2024,25(4):259-70.

[7] Büttner P,F eistner L,L urz P,et al. Dissecting calcific aortic valve disease —The role,etiology,and drivers of valvular fibrosis[J]. Front Cardiovasc Med,2021,8:660797.

[8] Matsushima N,M iyashita H,K retsinger RH. Sequence features,structure,ligand interaction,and diseases in small leucine rich repeat proteoglycans[J]. J Cell Commun Signal,2021,15(4):519- 531.

[9] Mienaltowski MJ,G onzales NL,B eall JM,et al. Basic structure,physiology,and biochemistry of connective tissues and extracellular matrix collagens[J]. Adv Exp Med Biol,2021,1348:5-43.

[10] Rivet R,R ao RM,N izet P,et al. Differential MMP-14 targeting by biglycan,decorin,fibromodulin,and lumican unraveled by in silico approach[J]. Am J Physiol Cell Physiol,2023,324(2):C353- C365.

[11] Tsui MC,L iu HY,C hu HS,et al. The versatile roles of lumican in eye diseases:a review[J]. Ocul Surf,2023,29:388- 397.

[12] Lopez SG,B onassar LJ. The role of SLRPs and large aggregating proteoglycans in collagen fibrillogenesis,extracellular matrix assembly,and mechanical function of fibrocartilage[J]. Connect Tissue Res,2022,63(3):269- 286.

[13] Wiktorska M,S acewicz-Hofman I,N iewiarowska J. The endothelial-to-mesenchymal transition changes the focal adhesion site proteins levels and the SLRP-lumican level in HMEC-1?cell line[J]. Exp Cell Res,2023,430(1):113692.

[14] Brézillon S,P ietraszek K,M aquart FX,et al. Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins[J]. FEBS J,2013,280(10):2369- 2381.

[15] Dauvé J,B elloy N,R ivet R,et al. Differential MMP-14 targeting by lumican-derived peptides unraveled by in silico approach[J]. Cancers (Basel),2021,13(19) :4930.

[16] Barreto G,S enturk B,C olombo L,et al. Lumican is upregulated in osteoarthritis and contributes to TLR4-induced pro-inflammatory activation of cartilage degradation and macrophage polarization[J]. Osteoarthritis Cartilage,2020,28(1):92-101.

[17] Maiti G,F rikeche J,L am CY,et al. Matrix lumican endocytosed by immune cells controls receptor ligand trafficking to promote TLR4 and restrict TLR9 in sepsis[J]. Proc Natl Acad Sci U S A,2021,118(27):e2100999118.

[18] Lim J,A guilan JT,S ellers RS,et al. Lipid mass spectrometry imaging and proteomic analysis of severe aortic stenosis[J]. J Mol Histol,2020,51(5):559- 571.

[19] Mach F,M iteva K. Window of opportunity for developing effective medical intervention for calcific aortic valve disease[J]. Eur Heart J,2024 ,45(37):3886-3888.

[20] Wang L,H e C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis[J]. Front Immunol,2022,13:967193.

[21] Dieterle MP,H usari A,R olauffs B,et al. Integrins,cadherins and channels in cartilage mechanotransduction:perspectives for future regeneration strategies[J]. Expert Rev Mol Med,2021,23:e14.

[22] di Vito A,Donato A,Presta I,et al. Extracellular matrix in calcific aortic valve disease:architecture,dynamic and perspectives[J]. Int J Mol Sci,2021,22(2):913.

[23] Celik B,L eal AF,T omatsu S. Potential targeting mechanisms for bone-directed therapies[J]. Int J Mol Sci,2024,25(15):8339.

[24] Li H,Z hang C,L iu Q. Lumican silencing ameliorates β-glycerophosphate-mediated vascular smooth muscle cell calcification by attenuating the inhibition of APOB on KIF2C activity[J]. Open Med (Wars),2023,18(1):20230790.

[25] Evans S,B utler JR,M attila JT,et al. Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophage-to-myofibroblast transformation[J]. PLoS Comput Biol,2020,16(12):e1008520.

[26] di G regorio J,R obuffo I,S palletta S,et al. The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders[J]. Front Cell Dev Biol,2020,8:607483.

[27] Giuliani G,R osina M,R eggio A. Signaling pathways regulating the fate of fibro/adipogenic progenitors (FAPs) in skeletal muscle regeneration and disease[J]. FEBS J,2022,289(21):6484- 6517.

[28] Woo SH,K yung D,L ee SH,et al. TXNIP suppresses the osteochondrogenic switch of vascular smooth muscle cells in atherosclerosis[J]. Circ Res,2023,132(1):52-71.

[29] Brodeur A,R oy V,T ouzel-Deschênes L,et al. Transcriptomic analysis of mineralized adipose-derived stem cell tissues for calcific valve disease modelling[J]. Int J Mol Sci,2024,25(4):2291.

[30] Liu H,Y in H,W ang Z,et al. Rho A/ROCK1 signaling-mediated metabolic reprogramming of valvular interstitial cells toward Warburg effect accelerates aortic valve calcification via AMPK/RUNX2 axis[J]. Cell Death Dis,2023,14(2):108.

[31] Manduteanu I,S imionescu D,S imionescu A,et al. Aortic valve disease in diabetes:molecular mechanisms and novel therapies[J]. J Cell Mol Med,2021,25(20):9483- 9495.

[32] Huang Y,W ang C,Z hou T,et al. Lumican promotes calcific aortic valve disease through H3 histone lactylation[J]. Eur Heart J,2024 ,45(37):3871-3885.

[33] Bogdanova M,Z abirnyk A,M alashicheva A,et al. Models and techniques to study aortic valve calcification in vitro,ex vivo and in vivo. An overview[J]. Front Pharmacol,2022,13:835825.

[34] Ravalli F,K ossar AP,T akayama H,et al. Aortic valve regurgitation:pathophysiology and implications for surgical intervention in the era of TAVR[J]. Struct Heart,2020,4(2):87-98.

[35] Miguez PA. Evidence of biglycan structure-function in bone homeostasis and aging[J]. Connect Tissue Res,2020,61(1):19-33.

[36] Lujano O lazaba O,F arrow J,M onkkonen T. Fibroblast heterogeneity and functions:insights from single-cell sequencing in wound healing,breast cancer,ovarian cancer and melanoma[J]. Front Genet,2024,15:1304853.

[37] Xu K,Z hang K,W ang Y,et al. Comprehensive review of histone lactylation:structure,function,and therapeutic targets[J]. Biochem Pharmacol,2024,225:116331.

更新日期/Last Update: 2025-05-16