[1]刘双 张博方 陈静.HLTF调控AngⅡ诱导的心脏成纤维细胞的作用及机制研究[J].心血管病学进展,2025,(2):166.[doi:10.16806/j.cnki.Ⅰissn.1004-3934.2025.02.015]
 LIU Shuang,ZHANG Bofang,CHEN Jing.The Role and Mechanism of HLTF in Regulating Ang?nduced Cardiac Fibroblast[J].Advances in Cardiovascular Diseases,2025,(2):166.[doi:10.16806/j.cnki.Ⅰissn.1004-3934.2025.02.015]
点击复制

HLTF调控AngⅡ诱导的心脏成纤维细胞的作用及机制研究()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年2期
页码:
166
栏目:
论著
出版日期:
2025-02-25

文章信息/Info

Title:
The Role and Mechanism of HLTF in Regulating Ang?nduced Cardiac Fibroblast
作者:
刘双 张博方 陈静
(武汉大学人民医院心内科 心血管病湖北省重点实验室 武汉大学心血管病研究所,湖北 武汉 430060)
Author(s):
LIU ShuangZHANG BofangCHEN Jing
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060, Hubei,China)
关键词:
解旋酶样转录因子心脏成纤维细胞血管紧张素Ⅱ心脏纤维化
Keywords:
Helicase-like transcription factorCardiac fibroblastAngiotensinCardiac fibrosis
DOI:
10.16806/j.cnki.Ⅰissn.1004-3934.2025.02.015
摘要:
目的 探究解旋酶样转录因子(HLTF)对血管紧张素Ⅱ(AngⅡ)诱导的心脏成纤维细胞(CF)中纤维化功能和表型影响及作用机制。 方法 分离培养原代小鼠CF,用浓度为1 μmol/L的AngⅡ处理CF,分为正常组和AngⅡ组。同时分别用腺病毒转染下调或上调HLTF的表达,将细胞进一步分为下调对照+AngⅡ组和下调HLTF+AngⅡ组及上调对照+AngⅡ组和上调HLTF+AngⅡ组。采用CCK-8法和细胞划痕检测细胞的增殖和迁移能力。RNA测序筛选相关差异基因。免疫印记检测HLTF、α-平滑肌肌动蛋白(α-SMA)和R-spondin1(Rspo1)蛋白水平。实时荧光定量聚合酶链反应检测胶原蛋白Ⅰ(COL1A1)mRNA水平。免疫荧光染色检测α-SMA水平。结果 AngⅡ诱导CF后HLTF蛋白及COL1A1 mRNA水平升高,CF增殖及迁移能力增加,且免疫荧光染色显示α-SMA表达增强(P<0.05)。下调HLTF+AngⅡ组与下调对照组比,CF中HLTF、α-SMA蛋白及COL1A1 mRNA均降低,CF增殖及迁移能力减弱(P<0.05)。相反上调HLTF进一步促进AngⅡ诱导CF中HLTF、α-SMA蛋白及COL1A1 mRNA表达,促进CF的增殖和迁移能力(P<0.05)。此外,RNA测序显示在下调HLTF后差异基因中Rspo1改变最显著。同时免疫印记结果表明,AngⅡ诱导的CF中HLTF下调或上调,Rspo1蛋白水平相应降低或升高。结论 下调HLTF可缓解AngⅡ诱导的CF纤维化功能和表型转换,且可能通过下调Rspo1改善心脏纤维化。
Abstract:
Objective To investigate the effect and mechanisms of helicase-like transcription factor (HLTF) on fibrosis function and phenotype in angiotensin Ⅱ ( AngⅡ)-induced cardiac fibroblasts (CF). Methods Primary mouse CFs were isolated and cultured,and treated with 1 μmol/L AngⅡ. Cells were divided into normal group and AngⅡ group . Additionally,adenoviral transfection was used to modulate HLTF expression,resulting in additional groups: downregulation control+AngⅡ group,HLTF downregulation+AngⅡ group,upregulation control+AngⅡ group and HLTF upregulation +AngⅡ group. Cell proliferation and migration were assessed using the CCK-8 assay and wound healing assay. RNA sequencing identified differentially expressed genes. Western blot was used to analyze the protein levels of HLTF,α-smooth muscle actin (α-SMA) and R-spondin1(Rspo1). Quantitative real-time PCR assessed mRNA levels of collagen typeⅠ(COL1A1). Immunofluorescence staining was used to assess α-SMA expression. Results AngⅡ stimulation increased HLTF protein and COL1A1 mRNA levels ,enhanced CF proliferation and migration,and elevated α-SMA expression as shown by immunofluorescence staining(P<0.05). Compared with the control group,the HLTF downregulation+AngⅡ group showed reduced levels of HLTF,α-SMA protein,and COL1A1 mRNA,as well as decreased CF proliferation and migration (P<0.05). Conversely,HLTF upregulation promoted AngⅡ-induced HLTF,α-SMA protein ,and COL1A1 mRNA expression,further enhancing CF proliferation and migration (P<0.05).RNA sequencing revealed that Rspo1 was the most significantly altered gene after HLTF downregulation. Western blot confirmed that HLTF downregulation or upregulation correspondingly decreased or increased Rspo1 protein levels in AngⅡ-treated CFs. Conclusion HLTF downregulation can alleviate AngⅡ-induced fibrosis function and phenotype transformation in CF ,potentially by suppressing Rspo1,thereby improving cardiac fibrosis

参考文献/References:

[1] Weng L,Ye J,Yang F,et al. TGF-β1/SMAD3 regulates programmed cell death 5 that suppresses cardiac fibrosis post-myocardial infarction by inhibiting HDAC3[J].Circ Res,2023,133(3):237-251.

[2] López B,Ravassa S,Moreno MU,et al. Diffuse myocardial fibrosis:mechanisms,diagnosis and therapeutic approaches[J].Nat Rev Cardiol,2021,18(7):479-498.

[3] Liu M,López de Juan Abad B,Cheng K. Cardiac fibrosis:myofibroblast-mediated pathological regulation and drug delivery strategies[J].Adv Drug Deliv Rev,2021,173:504-519.

[4] Elserafy M,Abugable AA,Atteya R,et al. Rad5,HLTF,and SHPRH:a fresh view of an old story[J].Trends Genet,2018,34(8):574-577.

[5] Seelinger M,Otterlei M. Helicase-like transcription factor HLTF and E3 ubiquitin ligase SHPRH confer DNA damage tolerance through direct interactions with Proliferating Cell Nuclear Antigen (PCNA)[J].Int J Mol Sci,2020,21(3):693.

[6] Bai G,Kermi C,Stoy H,et al. HLTF promotes fork reversal,limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis[J].Mol Cell,2020,78(6):1237-1251.e7.

[7] Helmer RA,Martínez-Zaguilán R,Dertien JS,et al. Helicase-like transcription factor (Hltf) regulates G2/M transition,Wt1/Gata4/Hif-1a cardiac transcription networks,and collagen biogenesis[J].PloS one,2013,8(11):e80461.

[8] Han M,Liu Z,Liu L,et al. Dual genetic tracing reveals a unique fibroblast subpopulation modulating cardiac fibrosis[J].Nature genetics,2023,55(4):665-678.

[9] Nagaraju CK,Robinson EL,Abdesselem M,et al. Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure[J].J Am Coll Cardiol,2019,73(18):2267-2282.

[10] Frangogiannis NG. Cardiac fibrosis[J].Cardiovasc Res,2021,117(6):1450-1488.

[11] Díez J,de Boer RA. Management of cardiac fibrosis is the largest unmet medical need in heart failure[J].Cardiovasc Res,2022,118(2):e20-e22.

[12] Dhont L,Mascaux C,Belayew A. The helicase-like transcription factor (HLTF) in cancer:loss of function or oncomorphic conversion of a tumor suppressor?[J].Cell Mol Life Sci,2016,73(1):129-147.

[13] Liu L,Liu H,Zhou Y,et al. HLTF suppresses the migration and invasion of colorectal cancer cells via TGF-β/SMAD signaling in vitro[J].Int J Oncol,2018,53(6):2780-2788.

[14] Xu Y,Ke S,Lu S,et al. HLTF promotes hepatocellular carcinoma progression by enhancing SRSF1 stability and activating ERK/MAPK pathway[J].Oncogenesis,2023,12(1):2.

[15] de Lau WB,Snel B,Clevers HC. The R-spondin protein family[J].Genome Biol,2012,13(3):242.

[16] Yan KS,Janda CY,Chang J,et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal[J].Nature,2017,545(7653):238-242.

[17] Su X,Zhou G,Tian M,et al. Silencing of RSPO1 mitigates obesity-related renal fibrosis in mice by deactivating Wnt/β-catenin pathway[J].Exp Cell Res,2021,405(2):112713.

[18] Xinguang Y,Huixing Y,Xiaowei W,et al. R-spondin1 arguments hepatic fibrogenesis in vivo and in vitro[J].J Surg Res,2015,193(2):598-605.

[19] Zhang M,Haughey M,Wang NY,et al. Targeting the Wnt signaling pathway through R-spondin 3 identifies an anti-fibrosis treatment strategy for multiple organs[J].PloS One,2020,15(3):e0229445.

[20] Tao H,Yang JJ,Shi KH,et al. Wnt signaling pathway in cardiac fibrosis:new insights and directions[J].Metabolism,2016,65(2):30-40.

[21] Xiang FL,Fang M,Yutzey KE. Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice[J].Nat Commun,2017,8(1):712.

[22] Nayakanti SR,Friedrich A,Sarode P,et al. Targeting Wnt-?-Catenin-FOSL signaling ameliorates right ventricular remodeling[J].Circ Res,2023,132(11):1468-1485.

更新日期/Last Update: 2025-03-11