[1]周梦丹 李库林 王如兴.巨噬细胞焦亡促进动脉粥样硬化发生发展的作用及其机制研究进展[J].心血管病学进展,2024,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2024.12.013]
 ZHOU Mengdan,LI Kulin,WANG Ruxing.Macrophage Pyroptosis in Promoting the Occurrence and Development of Atherosclerosis[J].Advances in Cardiovascular Diseases,2024,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2024.12.013]
点击复制

巨噬细胞焦亡促进动脉粥样硬化发生发展的作用及其机制研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年12期
页码:
1114
栏目:
综述
出版日期:
2024-12-25

文章信息/Info

Title:
Macrophage Pyroptosis in Promoting the Occurrence and Development of Atherosclerosis
作者:
周梦丹 李库林 王如兴
(南京医科大学附属无锡市人民医院心血管内科,江苏 无锡 214000)
Author(s):
ZHOU MengdanLI KulinWANG Ruxing
(Department of Cardiology,Wuxi Peoples Hospital Affiliated to Nanjing Medical University,Wuxi 214000,Jiangsu,China)
关键词:
巨噬细胞焦亡动脉粥样硬化胱天蛋白酶
Keywords:
Macrophage pyroptosis atherosclerosis caspase
DOI:
10.16806/j.cnki.issn.1004-3934.2024.12.013
摘要:
动脉粥样硬化是一种危害人类生命健康的慢性疾病。巨噬细胞作为炎症反应的重要介质,参与动脉粥样硬化发生发展。近年来研究发现,巨噬细胞焦亡是促进动脉粥样硬化发生发展的重要机制,其中胱天蛋白酶-1-Gasdermin家族(caspase-1-GSDMD)介导的巨噬细胞焦亡在动脉粥样硬化中起到关键作用。因此减轻巨噬细胞焦亡可能是逆转动脉粥样硬化的潜在治疗靶点。现主要综述巨噬细胞焦亡促进动脉粥样硬化发生发展及其相关抑制药物的治疗前景。
Abstract:
Atherosclerosis is a chronic disease that threatens human life and health. Macrophage,as an important mediator of inflammatory response,is involved in the development of atherosclerosis. Pyroptosis is a key cause of macrophage death in atherosclerotic plaques. In recent years,it has been found that macrophage pyroptosis is an important mechanism to promote the occurrence and development of atherosclerosis ,and the GasderminD(caspase-1-GSDMD)-mediated macrophage pyroptosis pathway plays a key role in atherosclerosis. Therefore,alleviating macrophage pyroptosis is a potential therapeutic target for reversing atherosclerosis. This article mainly reviews the promotion of macrophage pyroptosis in the occurrence and development of atherosclerosis and the treatment prospects of related inhibitory drugs

参考文献/References:

[1] Wu J,He S,Song Z,et al. Macrophage polarization states in atherosclerosis[J]. Front Immunol,2023,14:1185587.

[2] Gusev E,Sarapultsev A. Atherosclerosis and inflammation: Insights from the theory of general pathological processes[J]. Int J Mol Sci,2023,24(9):7910.

[3] Xu S,Ilyas I,Little PJ,et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies[J]. Pharmacol Rev,2021,73(3):924-967.

[4] Jinnouchi H,Guo L,Sakamoto A,et al. Diversity of macrophage phenotypes and responses in atherosclerosis[J]. Cell Mol Life Sci,2020,77(10):1919-1932.

[5] Hou P,Fang J,Liu Z,et al. Macrophage polarization and metabolism in atherosclerosis[J]. Cell Death Dis,2023,14(10):691.

[6] Ma J,Zhang H,Chen Y,et al. The role of macrophage iron overload and ferroptosis in atherosclerosis[J]. Biomolecules,2022,12(11):1702.

[7] Chen R,Zhang H,Tang B,et al. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets[J]. Signal Transduct Target Ther,2024,9(1):130.

[8] Wei X,Xie F,Zhou X,et al. Role of pyroptosis in inflammation and cancer[J]. Cell Mol Immunol,2022,19(9):971-992.

[9] Newton K,Strasser A,Kayagaki N,et al. Cell death[J]. Cell,2024,187(2):235-256.

[10] Rao Z,Zhu Y,Yang P,et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics,2022,12(9):4310-4329.

[11] Lin L,Zhang MX,Zhang L,et al. Autophagy,pyroptosis,and ferroptosis: new regulatory mechanisms for atherosclerosis[J]. Front Cell Dev Biol,2021,9:809955.

[12] Qian Z,Zhao Y,Wan C,et al. Pyroptosis in the initiation and progression of atherosclerosis [J]. Front Pharmacol,2021,12:652963.

[13] Wei Y,Yang L,Pandeya A,et al. Pyroptosis-induced inflammation and tissue damage[J]. J Mol Biol,2022,434(4):167301.

[14] Fu J,Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol,2023,41:301-316.

[15] Albosta MS,Grant JK,Taub P,et al. Inclisiran: a new strategy for LDL-C lowering and prevention of atherosclerotic cardiovascular disease[J]. Vasc Health Risk Manag,2023,19:421-431.

[16] Paganelli F,Mottola G,Fromonot J,et al. Hyperhomocysteinemia and cardiovascular disease: is the adenosinergic system the missing link[J]. Int J Mol Sci,2021,22(4):1690.

[17] Luo X,Weng X,Bao X,et al. A novel anti-atherosclerotic mechanism of quercetin: competitive binding to KEAP1 via Arg483 to inhibit macrophage pyroptosis[J]. Redox Biol,2022,57:102511.

[18] Cong L,Liu X,Bai Y,et al. Melatonin alleviates pyroptosis by regulating the SIRT3/FOXO3α/ROS axis and interacting with apoptosis in Atherosclerosis progression[J]. Biol Res,2023,56(1):62.

[19] Zhang S,Lv Y,Luo X,et al. Homocysteine promotes atherosclerosis through macrophage pyroptosis via endoplasmic reticulum stress and calcium disorder[J]. Mol Med,2023,29(1):73.

[20] Baatarjav C,Komada T,Karasawa T,et al. dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury[J]. Cell Death Differ,2022,29(12):2487-2502.

[21] Fidler TP,Xue C,Yalcinkaya M,et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis[J]. Nature,2021,592(7853):296-301.

[22] Mambwe B,Neo K,Javanmard Khameneh H,et al. Tyrosine dephosphorylation of ASC modulates the activation of the NLRP3 and AIM2 Inflammasomes[J]. Front Immunol,2019,10:1556.

[23] Abu khweek A,Amer AO. Pyroptotic and non-pyroptotic effector functions of caspase-11[J]. Immunol Rev,2020,297(1):39-52.

[24] Jiang M,Sun X,Liu S,et al. Caspase-11-Gasdermin D-mediated pyroptosis is involved in the pathogenesis of atherosclerosis[J]. Front Pharmacol,2021,12:657486.

[25] Zhao F,Guo Z,Hou F,et al. Magnoflorine alleviates "M1" polarized macrophage-induced intervertebral disc degeneration through repressing the HMGB1/Myd88/NF-κB pathway and NLRP3 inflammasome[J]. Front Pharmacol,2021,12:701087.

[26] Liang W,Wei R,Zhu X,et al. Downregulation of HMGB1 carried by macrophage-derived extracellular vesicles delays atherosclerotic plaque formation through Caspase-11-dependent macrophage pyroptosis[J]. Mol Med,2024,30(1):38.

[27] Zhan J,Wang J,Liang Y,et al. Apoptosis dysfunction: unravelling the interplay between ZBP1 activation and viral invasion in innate immune responses[J]. Cell Commun Signal,2024,22(1):149.

[28] Li M,Wang ZW,Fang LJ,et al. Programmed cell death in atherosclerosis and vascular calcification[J]. Cell Death Dis,2022,13(5):467.

[29] Gautier EL,Huby T,Witztum JL,et al. Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage[J]. Circulation,2009,119(13):1795-804.

[30] Hu Y,Liu Y,Zong L,et al. The multifaceted roles of GSDME-mediated pyroptosis in cancer: therapeutic strategies and persisting obstacles[J]. Cell Death Dis,2023,14(12):836.

[31] Hu Y,Liu Y,Zong L,et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis[J]. Cell Death Dis,2023,14(12):836.

[32] Zha S,Yu X,Wang X,et al. Topical simvastatin improves lesions of diffuse normolipemic plane xanthoma by inhibiting foam cell pyroptosis[J]. Front Immunol,2022,13:865704.

[33] Li H,Yang H,Qin Z,et al. Colchicine ameliorates myocardial injury induced by coronary microembolization through suppressing pyroptosis via the AMPK/SIRT1/NLRP3 signaling pathway[J]. BMC Cardiovasc Disord,2024,24(1):23.

[34] Nidorf SM,Fiolet ATL,Mosterd A,et al. Colchicine in patients with chronic coronary disease[J]. N Engl J Med,2020,383(19):1838-1847.

[35] Li Z,Zou X,Lu R,et al. Arsenic trioxide alleviates atherosclerosis by inhibiting CD36-induced endocytosis and TLR4/NF-κB-induced inflammation in macrophage and ApoE-/- mice[J]. Int Immunopharmacol,2024,128:111452.

[36] Burdette BE,Esparza AN,Zhu H,et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B,2021,11(9):2768-2782.

[37] Humphries F,Shmuel-galia L,Ketelut-carneiro N,et al. Succination inactivates gasdermin D and blocks pyroptosis[J]. Science,2020,369(6511):1633-1637.

[38] Hu JJ,Liu X,Xia S,et al. Fda-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J]. Nat Immunol,2020,21(7):736-745.

相似文献/References:

[1]张伟 黄从新.巨噬细胞与心血管稳态和疾病[J].心血管病学进展,2019,(9):1241.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.014]
 ZHANG Wei,HUANG Congxin.Macrophages are Associated with Cardiovascular Homeostasis and Diseases[J].Advances in Cardiovascular Diseases,2019,(12):1241.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.014]
[2]李一凡 张智伟.巨噬细胞相关的外泌体在心血管疾病中的作用研究进展[J].心血管病学进展,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
 LI Yifan,ZHANG Zhiwei.Role of Macrophage-Related Exosomes in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(12):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
[3]陈远洋 王志维.供体巨噬细胞在心脏移植中的研究进展[J].心血管病学进展,2022,(6):514.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.009]
 CHEN Yuanyang,WANG Zhiwei.Donor Macrophages in Heart Transplantation[J].Advances in Cardiovascular Diseases,2022,(12):514.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.009]
[4]付韫韬 赵庆彦?/html>.巨噬细胞调控离子通道致心律失常研究的最新进展[J].心血管病学进展,2022,(2):100.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.002]
 FU Yuntao ZHAO Qingyan.Macrophages Regulating Ion Channels to Induce Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(12):100.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.002]
[5]陈乾 秦铭 徐志云.单核/巨噬细胞与主动脉瓣钙化研究进展[J].心血管病学进展,2022,(10):898.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.008]
 CHEN Qian,QIN Ming,XU Zhiyun.Aortic Valve Calcification Caused by Mononuclear Phagocyte System[J].Advances in Cardiovascular Diseases,2022,(12):898.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.008]
[6]王朝阳 赵丽娜 田师鹏 陈淑霞 谷剑.炎症治疗在动脉粥样硬化中的研究进展[J].心血管病学进展,2023,(6):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]
 WANG Zhaoyang,ZHAO Lina,TIAN Shipeng,et al.Advances in the Treatment of Inflammation in Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(12):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]
[7]刘文秀 郭雨桐 孙雪 宋琳琳 刘越 丁雪.Calhex231通过焦亡改善大鼠心肌梗死面积大小及心脏纤维化[J].心血管病学进展,2024,(4):379.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.000]
 LIU Wenxiu,GUO Yutong,SUN Xue,et al.Calhex231 Attenuates Rat Myocardial Infarct Size and Fibrosis by Suppressing Pyroptosis[J].Advances in Cardiovascular Diseases,2024,(12):379.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.000]
[8]黄爱宝??少衡.巨噬细胞治疗缺血心肌的研究进展[J].心血管病学进展,2024,(6):543.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.015]
 HUANG Aibao,ZHANG Shaoheng?/html>.Research progress in Macrophage Therapy for?schemic Myocardium[J].Advances in Cardiovascular Diseases,2024,(12):543.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.015]

更新日期/Last Update: 2025-01-08