参考文献/References:
[1].Duray GZ,Ritter P,El-Chami M,et al. Long-term performance of a transcatheter pacing system:12-month results from the Micra Transcatheter Pacing Study[J]. Heart Rhythm,2017,14(5):702-709.
[2].Eggen MD,Grubac V,Bonner MD. Design and evaluation of a novel fixation mechanism for a transcatheter pacemaker[J].?IEEE Trans Biomed Eng,2015,62(9):2316-2323.
[3].Piccini JP,Stromberg K,Jackson KP,et al. Long-term outcomes in leadless Micra transcatheter pacemakers with elevated thresholds at implantation:results from the Micra Transcatheter Pacing System Global Clinical Trial[J]. Heart Rhythm,2017,14(5):685-691.
[4].Tam MTK,Cheng YW,Chan JYS,et al. Aveir VR real-world performance and chronic pacing threshold prediction using mapping and fixation electrical data[J].?Europace,2024,26(3):euae051.
[5].Reynolds DW,Ritter P. A leadless intracardiac transcatheter pacing system[J]. N Engl J Med,2016,374(26):2604-2605.
[6].Tjong FV,Reddy VY. Permanent leadless cardiac pacemaker therapy:a comprehensive review[J]. Circulation,2017,135(15):1458-1470.
[7].Lenormand T,Abou Khalil K,Bodin A,et al. Leadless cardiac pacing:results from a large single-centre experience[J].?Arch Cardiovasc Dis,2023,116(6-7):316-323.
[8].Oliveira VMR,Rivera A,Oliveira IC,et al. The effectiveness and safety of leadless pacemakers:an updated meta-analysis[J].?Curr Cardiol Rep,2024,26(8):789-799.
[9].Tolosana JM,Guasch E,San Antonio R,et al. Very high pacing thresholds during long-term follow-up predicted by a combination of implant pacing threshold and impedance in leadless transcatheter pacemakers[J]. J Cardiovasc Electrophysiol,2020,31(4):868-874.
[10].Higuchi M,Shinoda Y,Hasegawa T,et al. Predictors of increase in pacing threshold after transcatheter pacing system implantation due to micro-dislodgement[J]. Pacing Clin Electrophysiol,2020,43(11):1351-1357.
[11].Saxonhouse SJ,Conti JB,Curtis AB. Current of injury predicts adequate active lead fixation in permanent pacemaker/defibrillation leads[J]. J Am Coll Cardiol,2005,45(3):412-417.
[12].Redfearn DP,Gula LJ,Krahn AD,et al. Current of injury predicts acute performance of catheter-delivered active fixation pacing leads[J].?Pacing Clin Electrophysiol,2007,30(12):1438-1444.
[13].Yoh M,Takagi M,Takahashi H,et al. The unstable pacing thresholds of the leadless transcatheter pacemaker affected by body positions in subacute phase after implant[J]. Eur Heart J Case Rep,2018,3(1):yty160.
[14].Mond HG,Helland JR,Stokes K,et al. The electrode-tissue interface:the revolutionary role of steroid-elution[J].?Pacing Clin Electrophysiol,2014,37(9):1232-1249.
[15].Kistler PM,Liew G,Mond HG. Long-term performance of active-fixation pacing leads:a prospective study[J].?Pacing Clin Electrophysiol,2006,29(3):226-230.
[16].Kiani S,Wallace K,Stromberg K,et al. A predictive model for the long-term electrical performance of a leadless transcatheter pacemaker[J].?JACC Clin Electrophysiol,2021,7(4):502-512.
[17].Karpawich PP,Hakimi M,Arciniegas E,et al. Improved chronic epicardial pacing in children:steroid contribution to porous platinized electrodes[J].?Pacing Clin Electrophysiol,1992,15(8):1151-1157.
[18].Kutyifa V,Zima E,Molnar L,et al. Direct comparison of steroid and non-steroid eluting small surface pacing leads:randomized,multicenter clinical trial[J].?Cardiol J,2013,20(4):431-438.
[19].Huang TY,Baba N. Cardiac pathology of transvenous pacemakers[J].?Am Heart J,1972,83(4):469-474.
[20].Keiler J,Schulze M,Dreger R,et al. Quantitative and qualitative assessment of adhesive thrombo-fibrotic lead encapsulations (TFLE) of pacemaker and ICD leads in arrhythmia patients-a?post mortem?study[J].?Front Cardiovasc Med,2020,7:602179.
[21].Yang Z,Kirchhof N,Li S,et al. Effect of steroid elution on electrical performance and tissue responses in quadripolar left ventricular cardiac vein leads [J].?Pacing Clin Electrophysiol,2015,38(8):966-972.
[22].Kistler PM,Kalman JM,Fynn SP,et al. Rapid decline in acute stimulation thresholds with steroid-eluting active-fixation pacing leads[J].?Pacing Clin Electrophysiol,2005,28(9):903-909.
[23].Holtackers RJ,Emrich T,Botnar RM,et al. Late gadolinium enhancement cardiac magnetic resonance imaging:from basic concepts to emerging methods[J].?Rofo,2022,194(5):491-504.
[24].Jada L,Holtackers RJ,Martens B,et al. Quantification of myocardial scar of different etiology using dark- and bright-blood late gadolinium enhancement cardiovascular magnetic resonance[J].?Sci Rep,2024,14(1):5395.
[25].Holtackers RJ,van de Heyning CM,Chiribiri A,et al. Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar:a review of current techniques[J].?J Cardiovasc Magn Reson,2021,23(1):96.
[26].Meier C,Eisenbl?tter M,Gielen S. Myocardial late gadolinium enhancement (LGE) in cardiac magnetic resonance imaging (CMR)—An important risk marker for cardiac disease[J].?J Cardiovasc Dev Dis,2024,11(2):40.
[27].Degtiarova G,Claus P,Duchenne J,et al. Left ventricular regional glucose metabolism in combination with septal scar extent identifies CRT responders[J]. Eur J Nucl Med Mol Imaging,2021,48(8):2437-2446.
[28].Fieno DS,Kim RJ,Chen EL,et al. Contrast-enhanced magnetic resonance imaging of myocardium at risk:distinction between reversible and irreversible injury throughout infarct healing[J]. J Am Coll Cardiol,2000,36(6):1985-1991.
[29].Moon JC,Reed E,Sheppard MN,et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy[J]. J Am Coll Cardiol,2004,43(12):2260-2264.
[30].Rehwald WG,Fieno DS,Chen EL,et al. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury[J]. Circulation,2002,105(2):224-229.
[31].Alachkar MN,Mischke T,Mahnkopf C. [Cardiac magnetic resonance imaging and the myocardium:differentiation between vital and nonvital tissue][J].?Herzschrittmacherther Elektrophysiol,2022,33(3):272-277.
[32].Bazoukis G,Hui JMH,Lee YHA,et al. The role of cardiac magnetic resonance in identifying appropriate candidates for cardiac resynchronization therapy—A systematic review of the literature[J].?Heart Fail Rev,2022,27(6):2095-2118.
[33].Hu X,Xu H,Hassea SRA,et al. Comparative efficacy of image-guided techniques in cardiac resynchronization therapy:a meta-analysis[J].?BMC Cardiovasc Disord,2021,21(1):255.
[34].Larsen CK,Smiseth OA,Duchenne J,et al. Cardiac Magnetic Resonance Identifies Responders to Cardiac Resynchronization Therapy with an Assessment of Septal Scar and Left Ventricular Dyssynchrony[J].?J Clin Med,2023,12(22):7182.
[35].Behar JM,Jackson T,Hyde E,et al. Optimized left ventricular endocardial stimulation is superior to optimized epicardial stimulation in ischemic patients with poor response to cardiac resynchronization therapy:a combined magnetic resonance imaging,electroanatomic contact mapping,and hemodynamic study to target endocardial lead placement[J]. JACC Clin Electrophysiol,2016,2(7):799-809.
[36].Shetty AK,Duckett SG,Ginks MR,et al. Cardiac magnetic resonance-derived anatomy,scar,and dyssynchrony fused with fluoroscopy to guide LV lead placement in cardiac resynchronization therapy:a comparison with acute haemodynamic measures and echocardiographic reverse remodelling[J]. Eur Heart J Cardiovasc Imaging,2013,14(7):692-699.
[37].Leyva F,Foley PW,Chalil S,et al. Cardiac resynchronization therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson,2011,13(1):29.
[38].Liu Z,Hu Y,Qu X,et al. A self-powered intracardiac pacemaker in swine model[J].?Nat Commun,2024,15(1):507.