[1]全金海 李上海 梁伟钧?/html>.巨噬细胞在急性心肌梗死发展和治疗中的研究进展[J].心血管病学进展,2025,(4):332.[doi:10.16806/j.cnki.issn.1004-3934.2025.04.011]
 QUAN Jinhai,LI Shanghai,LIANG WeiJun.Role of Macrophages in the Development and Treatment of Acute Myocardial Infarction[J].Advances in Cardiovascular Diseases,2025,(4):332.[doi:10.16806/j.cnki.issn.1004-3934.2025.04.011]
点击复制

巨噬细胞在急性心肌梗死发展和治疗中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年4期
页码:
332
栏目:
综述
出版日期:
2025-04-25

文章信息/Info

Title:
Role of Macrophages in the Development and Treatment of Acute Myocardial Infarction
作者:
全金海 李上海 梁伟钧?/html>
(广东医科大学附属医院,广东 湛江524000)
Author(s):
QUAN JinhaiLI ShanghaiLIANG WeiJun
(The Affiliated Hospital of Guangdong Medical UniversityZhanjiang 524000GuangdongChina)
关键词:
心肌梗死巨噬细胞免疫反应炎症
Keywords:
Myocardial infarctionMacrophageImmunological reactionInflammation
DOI:
10.16806/j.cnki.issn.1004-3934.2025.04.011
摘要:
急性心肌梗死(AMI)及其诱发的心力衰竭是全球主要死亡和致残原因之一。虽然血运重建与药物治疗不断提升,但AMI的致死率仍居高不下。炎症在这一过程中扮演着重要角色,其中,单核细胞与巨噬细胞作为先天免疫系统的多效性细胞,在损伤初始炎症反应与后续愈合中起着关键作用。因此,深入理解巨噬细胞在AMI发展中的作用,对于治疗和改善患者预后至关重要。现将对巨噬细胞在AMI发展中的作用及治疗研究进展进行综述。
Abstract:
Acute myocardial infarction (AMI) and its induced heart failure are one of the leading causes of death and disability worldwide. Despite increasing revascularization and drug therapy,the fatality rate of AMI remains high. Inflammation plays an important role in this process,in which monocytes and macrophages,as pleiotropic cells of the innate immune system,play a key role in the initial inflammatory response to injury and subsequent healing. Therefore,a deeper understanding of the role of macrophages in the development of AMI is essential both for treating patients and for improving patient outcomes. This paper will review the role of macrophages in the development of acute myocardial infarction and the progress of therapeutic research

参考文献/References:

[1] Heifets L. Centennial of Metchnikoff’s discovery[J]. J Reticuloendothel Soc,1982,31(5):381-391.

[2] Peet C,Ivetic A,Bromage DI,et al. Cardiac monocytes and macrophages after myocardial infarction[J].Cardiovasc Res,2020,116(6):1101-1112.

[3] Dick SA,Macklin JA,Nejat S, et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction[J]. Nat Immunol,2019,20(1):29-39.

[4] Kim Y,Nurakhayev S,Nurkesh A,et al. Macrophage polarization in cardiac tissue repair following myocardial infarction[J]. Int J Mol Sci,2021,22(5):2715.

[5] Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease[J]. Nat Med,2018,24(6):711-720.

[6] Zhang Q,Wang L,Wang S,et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther,2022,7(1):78.

[7] Halade GV,Lee DH. Inflammation and resolution signaling in cardiac repair and heart failure[J]. EBioMedicine,2022,79:103992.

[8] Koenig AL,Shchukina I,Amrute J,et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure[J]. Nat Cardiovasc Res,2022,1(3):263-280.

[9] Molenaar B,Timmer LT,Droog M,et al. Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair[J]. Commun Biol,2021,4(1):146.

[10] Lafuse WP,Wozniak DJ,Rajaram MVS. Role of cardiac macrophages on cardiac inflammation,fibrosis and tissue repair[J]. Cells,2020,10(1):51.

[11] Zhang Z,Tang J,Cui X,et al. New insights and novel therapeutic potentials for macrophages in myocardial infarction[J]. Inflammation,2021,44(5):1696-1712.

[12] Jung SH,Hwang BH,Shin S,et al. Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2(hi) macrophages in infarcted hearts[J]. Nat Commun,2022,13(1):4580.

[13] Duncan SE,Gao S,Sarhene M,et al. Macrophage activities in myocardial infarction and heart failure[J]. Cardiol Res Pract,2020,2020:4375127.

[14] Molinaro C,Scalise M,Leo I,et al. Polarizing macrophage functional phenotype to foster cardiac regeneration[J]. Int J Mol Sci,2023,24(13):10747.

[15] Liu M, López de Juan Abad B,Cheng K. Cardiac fibrosis:Myofibroblast-mediated pathological regulation and drug delivery strategies[J]. Adv Drug Deliv Rev,2021,173:504-519.

[16] Alex L,Frangogiannis NG. Pericytes in the infarcted heart[J]. Vasc Biol,2019,1(1):H23-H31.

[17] Kologrivova I,Shtatolkina M,Suslova T,et al. Cells of the immune system in cardiac remodeling:main players in resolution of inflammation and repair after myocardial infarction[J]. Front Immunol,2021,12:664457.

[18] Al Sadoun H. Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions[J]. Cells,2022,11(15):2430.

[19] Huang CK,Dai D,Xie H,et al. Lgr4 governs a pro-inflammatory program in macrophages to antagonize post-infarction cardiac repair[J]. Circ Res,2020,127(8):953-973.

[20] Wang Y,Li C,Zhao R,et al. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction[J]. Theranostics,2021,11(13):6315-6333.

[21] Abe H,Takeda N,Isagawa T,et al. Macrophage hypoxia signaling regulates cardiac fibrosis via oncostatin-m[J]. Nat Commun,2019,10(1):2824.

[22] Deniset JF,Belke D,Lee WY,et al. Gata6+ pericardial cavity macrophages relocate to the injured heart and prevent cardiac fibrosis [J]. Immunity,2019,51(1):131-140.e5.

[23] Liu S,Chen J,Shi J,et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol,2020,115(2):22.

[24] Hausenloy DJ,Chilian W,Crea F,et al. The coronary circulation in acute myocardial ischaemia/reperfusion injury:a target for cardioprotection[J]. Cardiovasc Res,2019,115(7):1143-1155.

[25] Zou J,Fei Q,Xiao H,et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy[J]. J Cell Physiol,2019,234(10):17690-17703.

[26] Hu C,Wu Z,Huang Z,et al. Nox2 impairs VEGF-A-induced angiogenesis in placenta via mitochondrial ROS-STAT3 pathway[J]. Redox Biol,2021,45:102051.

[27] Pignata P,Apicella I,Cicatiello V,et al. Prolyl 3-hydroxylase 2 is a molecular player of angiogenesis[J]. Int J Mol Sci,2021,22(8):3896.

[28] Wong NR,Mohan J,Kopecky BJ,et al. Resident cardiac macrophages mediate adaptive myocardial remodeling[J]. Immunity,2021,54(9):2072-2088.e7.

[29] Nudelman A,Shenoy A,Allouche-Arnon H,et al. Proteolytic vesicles derived from salmonella enterica serovar typhimurium-infected macrophages:enhancing MMP-9-mediated invasion and EV accumulation[J]. Biomedicines,2024,12(2):434.

[30] Alonso-Herranz L,Sahun-Espanol A,Paredes A,et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFbeta1 after myocardial infarction[J]. Elife,2020,9:e57920.

[31] Chen Y,Zhang H,Hu L, et al. Pravastatin attenuates atherosclerosis after myocardial infarction by inhibiting inflammatory Ly6Chigh?monocytosis in apolipoprotein E knockout mice[J]. J Int Med Res,2020,48(7):300060520932816.

[32] Wang Q,Qu X,Zheng L,et al. Atorvastatin improves cardiac function of mice with acute myocardial infarction by interfering in macrophages to activate mitogen-activated protein kinase pathway[J]. Panminerva Med,2021,63(2):236-237.

[33] Chen XS, Cui JR, Meng XL, et al. Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways[J]. J Transl Med,2023,21(1):2.

[34] Rudi WS,Molitor M,Garlapati V, et al. ACE inhibition modulates myeloid hematopoiesis after acute myocardial infarction and reduces cardiac and vascular inflammation in ischemic heart failure[J]. Antioxidants (Basel),2021,10(3):396.

[35] Molitor M,Rudi WS,Garlapati V,et al. Nox2+ myeloid cells drive vascular inflammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensinⅡ receptor type 1 [J]. Cardiovasc Res,2021,117(1):162-177.

[36] Yue Y,Huang S,Wang L,et al. M2b macrophages regulate cardiac fibroblast activation and alleviate cardiac fibrosis after reperfusion injury[J]. Circ J,2020,84(4):626-635.

[37] Wang N,Liu C,Wang X,et al. Hyaluronic acid oligosaccharides improve myocardial function reconstruction and angiogenesis against myocardial infarction by regulation of macrophages[J]. Theranostics,2019,9(7):1980-1992.

[38] Kimbrough D,Wang SH,Wright LH,et al. HDAC inhibition helps post-MI healing by modulating macrophage polarization[J]. J Mol Cell Cardiol,2018,119:51-63.

[39] Ramanujam D,Sch?n AP,Beck C, et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload [J]. Circulation,2021,143(15):1513-1525.

[40] Zhao J, Li X, Hu J,et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res,2019,115(7):1205-1216.

[41] Yang HT,Li LL,Li SN, et al. MicroRNA-155 inhibition attenuates myocardial infarction-induced connexin 43 degradation in cardiomyocytes by reducing pro-inflammatory macrophage activation[J]. Cardiovasc Diagn Ther,2022,12(3):325-339.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(4):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(4):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(4):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(4):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]张伟 黄从新.巨噬细胞与心血管稳态和疾病[J].心血管病学进展,2019,(9):1241.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.014]
 ZHANG Wei,HUANG Congxin.Macrophages are Associated with Cardiovascular Homeostasis and Diseases[J].Advances in Cardiovascular Diseases,2019,(4):1241.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.014]
[6]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(4):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[7]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(4):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[8]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(4):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[9]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(4):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[10]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(4):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[11]黄爱宝??少衡.巨噬细胞治疗缺血心肌的研究进展[J].心血管病学进展,2024,(6):543.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.015]
 HUANG Aibao,ZHANG Shaoheng?/html>.Research progress in Macrophage Therapy for?schemic Myocardium[J].Advances in Cardiovascular Diseases,2024,(4):543.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.015]

更新日期/Last Update: 2025-05-16