[1]王昕瑜 张婷婷 邢邯英 王忠丽 郭艺芳.miR-21在心肌缺血损伤相关信号通路中的作用[J].心血管病学进展,2024,(11):998.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.009]
 WANG Xinyu,ZHANG Tingting,XING Hanying,et al.The Effect of miR-21 in Signaling Pathway Associated with Myocardical Ischemia Injury[J].Advances in Cardiovascular Diseases,2024,(11):998.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.009]
点击复制

miR-21在心肌缺血损伤相关信号通路中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年11期
页码:
998
栏目:
综述
出版日期:
2024-11-25

文章信息/Info

Title:
The Effect of miR-21 in Signaling Pathway Associated with Myocardical Ischemia Injury
作者:
王昕瑜1 张婷婷1 邢邯英2 王忠丽 3 郭艺芳1
(1.河北省人民医院老年心血管内科,河北 石家庄050051;2.河北省人民医院临研中心,河北 石家庄050051;3.河北省人民医院体检中心,河北 石家庄050051)
Author(s):
WANG Xinyu1ZHANG Tingting1XING Hanying2WANG Zhongli 3GUO Yifang1
(1.Department of Geriatric Cardiology,Hebei General Hospital,Shijiazhuang 050051,Hebei,China; 2.Clinical Research Center,Hebei General Hospital,Shijiazhuang 050051,Hebei,China; 3.Department of Physical Examination Center,Hebei General Hospital,Shijiazhuang 050051,Hebei,China)
关键词:
微RNA-21心肌梗死心肌缺血再灌注损伤心力衰竭
Keywords:
miR-21Myocardial infarctionMyocardial Ischemia-reperfusion injuryHeart failure
DOI:
10.16806/j.cnki.issn.1004-3934.2024.11.009
摘要:
微RNA是一种小的非编码RNA,能通过识别同源序列和干扰转录翻译等过程,调控其靶基因所在的信号传导通路,从而影响心血管疾病的发生发展。微RNA-21(miR-21)是最早发现的哺乳动物微RNA之一,且在心脏组织中高表达,尤其是在心肌成纤维细胞中表达最高,因此miR-21的稳态对心血管疾病尤为重要。现以心肌梗死、心力衰竭和心肌缺血再灌注损伤为切入点对miR-21的作用及其机制进行综述,并进一步探讨miR-21作为心血管疾病的生物标志物和治疗靶点的可行性。
Abstract:
MicroRNA (mi RNA) is small non-coding R NA that can regulate the signal ing pathway of target genes by recognizing homologous sequences and interfering with transcription and translation processes,thus affecting the occurrence and development of cardiovascular disease. MicroRNA-21(miR-21) is one of the earliest discovered mammalian miRNAs and is highly expressed in heart tissue ,especially in myocardial fibroblasts. Therefore,the homeostasis of miR-21 is particularly important for cardiovascular diseases. In this review,we reviewed the role and mechanism of miR-21 in myocardial infarction,heart failure and myocardial ischemia-reperfusion injury,and further explored the feasibility of miR-21 as a biomarker and therapeutic target for cardiovascular disease

参考文献/References:

[1] Lee RC,Feinbaum RL,Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.

[2] 马明仁,焦丕奇,王菲,等. miR-21在心血管疾病中作用的研究进展[J]. 解放军医学院学报,2022,43(6):715-719.

[3] Lee Y,Ahn C,Han J,et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing[J]. Nature,2003,425(6956):415-419.

[4] Hammond SM,Boettcher S,Caudy AA,et al. Argonaute2,a link between genetic and biochemical analyses of RNAi[J]. Science,2001,293(5532):1146- 1150.

[5] Friedman RC,Farh KK,Burge CB,et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res,2009,19(1):92-105.

[6] 侯培培,于倩,矫妮,等. 老年冠心病慢性心衰患者血清miR-214 galectin-3表达及其预后相关性研究[J]. 河北医学,2021,27(1):45-50.

[7] Yu Q ,Zhang N,Gan X,et al. EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis[J]. Phytomedicine ,2023,119:154999.

[8] Jayawardena E,Medzikovic L,Ruffenach G,et al. Role of miRNA-1 and miRNA-21 in acute myocardial ischemia-reperfusion injury and their potential as therapeutic strategy[J]. Int J Mol Sci,2022,23(3):1512.

[9] Ramanujam D,Schon AP,Beck C,et al. MicroRNA-21-dependent macrophage-to- f ibroblast signaling determines the cardiac response to pressure overload[J]. Circulation,2021,143(15):1513-1525.

[10] Chang WT,Wu CC,Lin YW,et al. Dynamic changes in miR-21 regulate right ventricular dysfunction in congenital heart disease-related pulmonary arterial hypertension[J]. Cells,2022,11(3):564.

[11] Zhang J,Lu Y,Mao Y,et al. IFN-γ enhances the efficacy of mesenchymal stromal cell-derived exosomes via miR-21 in myocardial infarction rats[J]. Stem Cell Res Ther,2022,13(1):333

[12] Zhang Y,Yuan B,Xu Y,et al. MiR-208b/miR-21 promotes the progression of cardiac fibrosis through the activation of the TGF-β1/Smad-3 signaling pathway:an in vitro and in vivo study[J]. Front Cardiovasc Med,2022,9:924629.

[13] Zhou XH,Chai HX,Bai M,et al. LncRNA-GAS5 regulates PDCD4 expression and mediates myocardial infarction-induced cardiomyocytes apoptosis via targeting miR-21[J]. Cell Cycle,2020,19(11):363-1377.

[14] Gu H,Liu Z,Li Y,et al. Serum-derived extracellular vesicles protect against acute myocardial infarction by regulating miR-21/PDCD4 signaling pathway[J]. Front Physiol,2018,9:348.

[15] Lu K,Chen Q,Li M,et al. Programmed cell death factor 4 (PDCD4),a novel therapy target for metabolic diseases besides cancer[J]. Free Radic Biol Med,2020,159:150-163.

[16] Ding H,Wang Y,Hu L,et al. Combined detection of miR-21-5p,miR-30a-3p,miR-30a-5p, miR-155-5p,miR-216a and miR-217 for screening of early heart failure diseases[J]. Biosci Rep,2020,40(3):BSR20191653.

[17] Nemcekova V,Kmecova Z,Bies PL,et al. Hematocrit-related alterations of circulating microRNA-21 levels in heart failure patients with reduced ejection fraction:a preliminary study[J]. Genet Test Mol Biomarkers,2021,25(4):302-306.

[18] Schneider S,Silvello D,Martinelli NC,et al. Plasma levels of microRNA-21 ,-126 and -423-5p alter during clinical improvement and are associated with the prognosis of acute heart failure[J]. Mol Med Rep,2018,17(3):4736-4746.

[19] Chen C,Liu S,Cao G,et al. Cardioprotective effect of paeonol on chronic heart failure induced by doxorubicin via regulating the miR-21-5p/S-phase kinase-associated protein 2 axis[J]. Front Cardiovasc Med,2022,9:695004.

[20] Tang B,Kang P,Zhu L,et al. Simvastatin protects heart function and myocardial energy metabolism in pulmonary arterial hypertension induced right heart failure[J]. J Bioenerg Biomembr,2021,53(1):1-12.

[21] Shin HJ,Kim H,Oh S,et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy[J]. Nature,2016,534(7608):553-557.

[22] Li C,Du L,Ren Y,et al. SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination[J]. J Exp Clin Cancer Res,2019,38(1):76.

[23] Zhang Y,Zvi YS,Batko B,et al. Down-regulation of Skp2 expression inhibits invasion and lung metastasis in osteosarcoma[J]. Sci Rep,2018,8(1):14294.

[24] Wu H,Wang Y,Wang X,et al. MicroRNA-365 accelerates cardiac hypertrophy by inhibiting autophagy via the modulation of Skp2 expression[J]. Biochem Biophys Res Commun,2017,484(2):304-310.

[25] Humeres C,Shinde AV,Hanna A,et al. Smad7 effects on TGF-beta and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure[J]. J Clin Invest,2022,132(3):e146926.

[26] Yuan J,Fu X. MicroRNA-21 mediates the protective role of emulsified isoflurane against myocardial ischemia/reperfusion injury in mice by targeting SPP1[J]. Cell Signal,2021,86:110086.

[27] Wang X,Zhang T,Zhai J,et al. MiR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression[J]. Biosci Rep,2023,43(9):BSR20230014.

[28] Zhang J,Luo CJ,Xiong XQ,et al. MiR-21-5p-expressing bone marrow mesenchymal stem cells alleviate myocardial ischemia/reperfusion injury by regulating the circRNA_ 0031672/miR-21-5p/programmed cell death protein 4 pathway[J]. J Geriatr Cardiol,2021,18(12):1029-1043.

[29] Hernandez SC,Hogg CO,Billon Y,et al. Secreted phosphoprotein 1 expression in endometrium and placental tissues of hyperprolific large white and meishan gilts[J]. Biol Reprod,2013,88(5):120.

[30] Duerr GD,Mesenholl B,Heinemann JC,et al. Cardioprotective effects of osteopontin-1 during development of murine ischemic cardiomyopathy[J]. Biomed Res Int,2014,2014:124063.

[31] Rochat-Steiner V,Becker K,Micheau O,et al. FIST/HIPK3:a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits Fas-mediated Jun NH2-terminal kinase activation[J]. J Exp Med,2000,192(8):1165-1174.

[32] Oh J,Malter JS. Pin1-FADD interactions regulate Fas-mediated apoptosis in activated eosinophils[J]. J Immunol,2013,190(10):4937-4945.

[33] Curtin JF,Cotter TG. JNK regulates HIPK3 expression and promotes resistance to Fas-mediated apoptosis in DU 145 prostate carcinoma cells[J]. J Biol Chem,2004,279(17):17090-17100.

[34] Zhou P,Pu WT. Recounting cardiac cellular composition[J]. Circ Res,2016,118(3):368-370.

[35] Surina S,Fontanella RA,Scisciola L,et al. MiR-21 in human cardiomyopathies[J]. Front Cardiovasc Med,2021,8:767064.

[36] Bonneau E,Neveu B,Kostantin E,et al. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic mark et[J]. EJIFCC,2019,30(2):114-127.

相似文献/References:

[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
 WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(11):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
 SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(11):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
 CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(11):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
 CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(11):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
 WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(11):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(11):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(11):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
 HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(11):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(11):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
 XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(11):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]

更新日期/Last Update: 2024-12-02