参考文献/References:
[1] Fernandes GC,Fernandes A,Cardoso R,et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure:a meta-analysis of 34 randomized controlled trials [J]. Heart Rhythm,2021,18(7):1098-1105.
[2] Manolis AA,Manolis TA,Melita H,et al. Sodium-glucose cotransporter type 2?inhibitors and?cardiac?arrhythmias[J]. Trends Cardiovasc Med,2023,33(7):418-428.
[3] Maltsev VA,Undrovinas A. Late?sodium?current?in?failing?heart:friend?or?foe?[J]. Prog Biophys Mol Biol,2008,96(1-3):421-451.
[4] Philippaert K,Kalyaanamoorthy S,Fatehi M,et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin[J]. Circulation,2021,143(22):2188-2204.
[5] Lee TI,Chen YC,Lin YK,et al. Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats[J]. Int J Mol Sci,2019,20(7):1680.
[6] Hegyi B,Hernandez JM,Shen EY,et al. Empagliflozin reverses late Na+ current enhancement and cardiomyocyte proarrhythmia in a translational murine model of heart failure with preserved ejection fraction[J]. Circulation,2022,145(13):1029 -1031.
[7] Mustroph J,Baier MJ,Pabel S,et al. Empagliflozin inhibits cardiac late sodium current by Ca/calmodulin-dependent kinaseⅡ[J]. Circulation,2022,146(16):1259-1261.
[8] Wagner S,Dybkova N,Rasenack E,et al. Ca2+/calmodulin-dependent protein kinaseⅡregulates cardiac Na+ channels[J]. J Clin Invest,2006,116 (12):3127-3138.
[9]Santos-Gallego CG,Mayr M,Badimon J. SGLT2 inhibitors in heart failure:targeted metabolomics and energetic metabolism[J]. Circulation,2022,146(11):819-821.
[10] Sato T,Kouzu H,Yano T,et al. Potential favorable action of sodium-glucose cotransporter-2 inhibitors on sudden cardiac death:a brief overview[J]. Front Cardiovasc Med,2023,10:1159953.
[11] Paasche A,Wiedmann F,Kraft M,et al. Acute antiarrhythmic effects of SGLT2 inhibitors-dapagliflozin lowers?the excitability of atrial cardiomyocytes[J]. Basic Res Cardiol,2024,119(1):93-112.
[12] Treinys R,Jurevicius J. L-type Ca2+ channels in the heart:structure and regulation[J]. Medicina(Kaunas),2008,44(7):491-499.
[13] Hamouda NN,Sydorenko V,Qureshi MA,et al. Dapagliflozin reduces?the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats[J]. Mol Cell Biochem,2015,400(1-2):57-68.
[14] Arow M,Waldman M,Yadin D,et al. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy[J]. Cardiovasc Diabetol,2020,19(1):7.
[15] Karpushev AV,Mikhailova VB,Klimenko ES,et al. SGLT2inhibitor empagliflozin modulates ion channels in adult zebrafish heart[J]. Int J Mol Sci,2022,23(17):9559.
[16] Kolesnik E,Scherr D,Rohrer U,et al. SGLT2inhibitors?and their antiarrhythmic properties[J]. Int J Mol Sci,2022,23(3):1678.
[17] Bertero E,Roma LP, Ameri P,et al.?Cardiac effects of SGLT2 inhibitors:the sodium hypothesis[J]. Cardiovasc Res, 2018,114(1):12-18.
[18] Uthman L,Baartscheer A,Bleijlevens B,et al. Class?effects of SGLT2?inhibitors in?mouse?cardiomyocytes?and?hearts:inhibition of Na+/H+ exchanger,lowering of cytosolic Na+ and vasodilation [J]. Diabetologia,2018,61(3):722-726.
[19] Baartscheer A,Schumacher CA,Wüst RC,et al. Empagliflozin decreases myocardial cytoplasmic Na+?through inhibition of the cardiac Na+/H+?exchanger in rats and rabbits[J]. Diabetologia,2017,60(3):568-573.
[20] Meo M, Meste O, Signore S,et al. Reduction?in?Kvcurrent enhances the temporal?dispersion?of?the?action?potential?in?diabetic myocytes:insights from a novel repolarization?algorithm[J]. J Am Heart Assoc,2016,5(2):e003078.
[21] 瞿龙,黄德嘉. 心力衰竭时室性心律失常发生机制研究进展[J]. 心血管病学进展,2001,22(1):47-49.
[22] Rahm AK,Müller ME,Gramlich D,et al. Inhibition of cardiac K v4.3(Ito) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine[J]. Eur J Pharmacol,2020,880:173159.
[23] Zicha S,Xiao L,Stafford S,et al. Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts[J]. J Physiol,2004,561(Pt 3):735-748.
[24] Rose J,Armoundas AA,Tian Y,et al. Molecular correlates of altered expression of potassium currents in failing rabbit myocardium[J]. Am J Physiol Heart Circ Physiol,2005,288(5):H2077-H2087.
[25] Tsuji Y,Zicha S,Qi XY,et al. Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia:discrete arrhythmogenic consequences related to differential delayed-rectifier changes[J]. Circulation,2006,113(3):345-355.
[26] Bossuyt J,Borst JM,Verberckmoes M,et al. Protein kinase D1 regulates cardiac hypertrophy,potassium channel remodeling,and arrhythmias in heart failure[J]. J Am Heart Assoc,2022,11(19):e027573.
[27] Nakase M,Yahagi K,Horiuchi Y,et al. Effect of dapagliflozin on ventricular repolarization in patients with heart failure with reduced ejection fraction[J]. Heart Vessels,2023,38(12):1414-1421.
[28] ?zgür Bar?? V,Din?soy B,Gedikli E,et al. Empagliflozin significantly attenuates sotalol-induced QTc prolongation in rats[J]. Kardiol Pol,2021,79(1):53-57.
[29] Durak A,Olgar Y,Degirmenci S,et al. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats[J]. Cardiovasc Diabetol,2018,17(1):144.
相似文献/References:
[1]赵靖华,综述,尚美生,等.衰老与心律失常[J].心血管病学进展,2016,(2):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
ZHAO Jinghua,SHANG Meisheng,YAO Yan.Aging and Arrhythmias[J].Advances in Cardiovascular Diseases,2016,(11):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
[2]娄奇,李为民.CaV1.2在心律失常中作用的研究进展[J].心血管病学进展,2019,(6):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
LOU Qi,LI Weimin.CaV1.2 in Arrhythmias[J].Advances in Cardiovascular Diseases,2019,(11):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
[3]李如意 刘延俊 杜荣品.心力衰竭时β3-肾上腺素能受体与心律失常的研究进展[J].心血管病学进展,2020,(1):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
LI Ruyi,LIU Yanjun,DU Rongpin.β3-adrenergic Receptors and Arrhythmia in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(11):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
[4]阿依尼尕尔·马木提 周贤惠.光遗传学技术在心律失常研究中的应用及进展[J].心血管病学进展,2020,(7):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
Ayinigaer·Mamuti,ZHOU Xianhui.Application and Progress of Optogenetics in Study of Cardiac Arrhythmias[J].Advances in Cardiovascular Diseases,2020,(11):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
[5]程家元 殷跃辉.沙库巴曲缬沙坦在心血管疾病中的临床应用与展望[J].心血管病学进展,2020,(9):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
CHENG Jiayuan YIN Yuehui.Clinical Application and Prospect of Sacubitril Valsartan in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(11):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
[6]查克岚 叶强.心电图成像在心律失常诊治中的研究进展[J].心血管病学进展,2020,(9):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
ZHA Kelan,YE Qiang.Electrocardiographic Imaging in Arrhythmia Diagnosis and Treatment[J].Advances in Cardiovascular Diseases,2020,(11):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
[7]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(11):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[8]林晶 吉庆伟 刘伶.致心律失常性心肌病的研究进展[J].心血管病学进展,2020,(12):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
LING JingJI Qingwei,LIU Lin.Arrhythmogenic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(11):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
[9]李翠兰 刘文玲 高元丰.先天性与获得性长QT综合征诊断治疗现状[J].心血管病学进展,2021,(5):385.[doi:10.16806/j.cnki.issn.1004-3934.2021.0.001]
LI Cuilan,LIU Wenling,GAO Yuanfeng.Diagnostic and Therapeutic Status for Congenital and Acquired Long QT Syndrome[J].Advances in Cardiovascular Diseases,2021,(11):385.[doi:10.16806/j.cnki.issn.1004-3934.2021.0.001]
[10]崔利军 王永德.脉冲电场用于心律失常消融的研究进展[J].心血管病学进展,2022,(1):10.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.003]
CUI Lijun,WANG Yongde.Pulsed Electric Field for Ablation of Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(11):10.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.003]