[1]王森 钱进 姜苏蓉.SGLT2抑制剂对心脏离子通道作用的研究进展[J].心血管病学进展,2024,(11):1013.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.012]
 WANG Sen,QIAN Jin,JIANG Surong.Effects of SGLT2 Inhibitors on C ardiac Ion Channels[J].Advances in Cardiovascular Diseases,2024,(11):1013.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.012]
点击复制

SGLT2抑制剂对心脏离子通道作用的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年11期
页码:
1013
栏目:
综述
出版日期:
2024-11-25

文章信息/Info

Title:
Effects of SGLT2 Inhibitors on C ardiac Ion Channels
作者:
王森 钱进 姜苏蓉
(南京医科大学第一附属医院 江苏省人民医院老年心血管科,江苏 南京 210029)
Author(s):
WANG SenQIAN JinJIANG Surong
(Department of Geriatric Cardiology,Jiangsu Province Hospital,The First Affiliated Hospital of Nanjing Medical University,Nanjing 210029,Jiangsu,China)
关键词:
钠-葡萄糖共转运蛋白-2抑制剂心律失常离子通道
Keywords:
Sodium-glucose cotransporter-2 inhibitorArrhythmiaIon channel
DOI:
10.16806/j.cnki.issn.1004-3934.2024.11.012
摘要:
钠-葡萄糖共转运蛋白-2(SGLT2)抑制剂是一种新型抗心力衰竭药物。随着SGLT2抑制剂的应用,其对心律失常的潜在作用也逐渐受到关注。心脏钠、钾、钙等离子通道有顺序地开放并保持动态平衡,保证了心脏电信号的正常传导。如果以上离子通道之间平衡失调,就可引起心脏电信号传导紊乱,诱发心律失常。近年研究发现SGLT2抑制剂可改善心脏离子通道的异常,此作用亦为SGLT2抑制剂抗心律失常的机制之一。现从离子通道的角度对该类药物抗心律失常作用的电生理基础进行综述。
Abstract:
Sodium-glucose cotransporter -2(SGLT2) inhibitor is a new type of anti-heart failure drug. With the application of SGLT2 inhibitors,their potential effects on arrhythmias have gradually received attention. The sequential opening and dynamic balance of cardiac ion channels,such as sodium,potassium and calcium channels,are necessary to ensure the normal transmission of cardiac electrical signals. If the balance of ion channels is changed,it can cause heart electrical signals disorder and induce arrhythmia. In recent years,some studies have found that SGLT2 inhibitors improve cardiac ion channel abnormalities,which is one of the anti-arrhythmic mechanisms of SGLT2 inhibitors. This article reviews the electrophysiological basis of the antiarrhythmic effects of this type of drugs from the perspective of ion channels

参考文献/References:

[1] Fernandes GC,Fernandes A,Cardoso R,et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure:a meta-analysis of 34 randomized controlled trials [J]. Heart Rhythm,2021,18(7):1098-1105.

[2] Manolis AA,Manolis TA,Melita H,et al. Sodium-glucose cotransporter type 2?inhibitors and?cardiac?arrhythmias[J]. Trends Cardiovasc Med,2023,33(7):418-428.

[3] Maltsev VA,Undrovinas A. Late?sodium?current?in?failing?heart:friend?or?foe?[J]. Prog Biophys Mol Biol,2008,96(1-3):421-451.

[4] Philippaert K,Kalyaanamoorthy S,Fatehi M,et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin[J]. Circulation,2021,143(22):2188-2204.

[5] Lee TI,Chen YC,Lin YK,et al. Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats[J]. Int J Mol Sci,2019,20(7):1680.

[6] Hegyi B,Hernandez JM,Shen EY,et al. Empagliflozin reverses late Na+ current enhancement and cardiomyocyte proarrhythmia in a translational murine model of heart failure with preserved ejection fraction[J]. Circulation,2022,145(13):1029 -1031.

[7] Mustroph J,Baier MJ,Pabel S,et al. Empagliflozin inhibits cardiac late sodium current by Ca/calmodulin-dependent kinaseⅡ[J]. Circulation,2022,146(16):1259-1261.

[8] Wagner S,Dybkova N,Rasenack E,et al. Ca2+/calmodulin-dependent protein kinaseⅡregulates cardiac Na+ channels[J]. J Clin Invest,2006,116 (12):3127-3138.

[9]Santos-Gallego CG,Mayr M,Badimon J. SGLT2 inhibitors in heart failure:targeted metabolomics and energetic metabolism[J]. Circulation,2022,146(11):819-821.

[10] Sato T,Kouzu H,Yano T,et al. Potential favorable action of sodium-glucose cotransporter-2 inhibitors on sudden cardiac death:a brief overview[J]. Front Cardiovasc Med,2023,10:1159953.

[11] Paasche A,Wiedmann F,Kraft M,et al. Acute antiarrhythmic effects of SGLT2 inhibitors-dapagliflozin lowers?the excitability of atrial cardiomyocytes[J]. Basic Res Cardiol,2024,119(1):93-112.

[12] Treinys R,Jurevicius J. L-type Ca2+ channels in the heart:structure and regulation[J]. Medicina(Kaunas),2008,44(7):491-499.

[13] Hamouda NN,Sydorenko V,Qureshi MA,et al. Dapagliflozin reduces?the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats[J]. Mol Cell Biochem,2015,400(1-2):57-68.

[14] Arow M,Waldman M,Yadin D,et al. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy[J]. Cardiovasc Diabetol,2020,19(1):7.

[15] Karpushev AV,Mikhailova VB,Klimenko ES,et al. SGLT2inhibitor empagliflozin modulates ion channels in adult zebrafish heart[J]. Int J Mol Sci,2022,23(17):9559.

[16] Kolesnik E,Scherr D,Rohrer U,et al. SGLT2inhibitors?and their antiarrhythmic properties[J]. Int J Mol Sci,2022,23(3):1678.

[17] Bertero E,Roma LP, Ameri P,et al.?Cardiac effects of SGLT2 inhibitors:the sodium hypothesis[J]. Cardiovasc Res, 2018,114(1):12-18.

[18] Uthman L,Baartscheer A,Bleijlevens B,et al. Class?effects of SGLT2?inhibitors in?mouse?cardiomyocytes?and?hearts:inhibition of Na+/H+ exchanger,lowering of cytosolic Na+ and vasodilation [J]. Diabetologia,2018,61(3):722-726.

[19] Baartscheer A,Schumacher CA,Wüst RC,et al. Empagliflozin decreases myocardial cytoplasmic Na+?through inhibition of the cardiac Na+/H+?exchanger in rats and rabbits[J]. Diabetologia,2017,60(3):568-573.

[20] Meo M, Meste O, Signore S,et al. Reduction?in?Kvcurrent enhances the temporal?dispersion?of?the?action?potential?in?diabetic myocytes:insights from a novel repolarization?algorithm[J]. J Am Heart Assoc,2016,5(2):e003078.

[21] 瞿龙,黄德嘉. 心力衰竭时室性心律失常发生机制研究进展[J]. 心血管病学进展,2001,22(1):47-49.

[22] Rahm AK,Müller ME,Gramlich D,et al. Inhibition of cardiac K v4.3(Ito) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine[J]. Eur J Pharmacol,2020,880:173159.

[23] Zicha S,Xiao L,Stafford S,et al. Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts[J]. J Physiol,2004,561(Pt 3):735-748.

[24] Rose J,Armoundas AA,Tian Y,et al. Molecular correlates of altered expression of potassium currents in failing rabbit myocardium[J]. Am J Physiol Heart Circ Physiol,2005,288(5):H2077-H2087.

[25] Tsuji Y,Zicha S,Qi XY,et al. Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia:discrete arrhythmogenic consequences related to differential delayed-rectifier changes[J]. Circulation,2006,113(3):345-355.

[26] Bossuyt J,Borst JM,Verberckmoes M,et al. Protein kinase D1 regulates cardiac hypertrophy,potassium channel remodeling,and arrhythmias in heart failure[J]. J Am Heart Assoc,2022,11(19):e027573.

[27] Nakase M,Yahagi K,Horiuchi Y,et al. Effect of dapagliflozin on ventricular repolarization in patients with heart failure with reduced ejection fraction[J]. Heart Vessels,2023,38(12):1414-1421.

[28] ?zgür Bar?? V,Din?soy B,Gedikli E,et al. Empagliflozin significantly attenuates sotalol-induced QTc prolongation in rats[J]. Kardiol Pol,2021,79(1):53-57.

[29] Durak A,Olgar Y,Degirmenci S,et al. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats[J]. Cardiovasc Diabetol,2018,17(1):144.

相似文献/References:

[1]赵靖华,综述,尚美生,等.衰老与心律失常[J].心血管病学进展,2016,(2):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
 ZHAO Jinghua,SHANG Meisheng,YAO Yan.Aging and Arrhythmias[J].Advances in Cardiovascular Diseases,2016,(11):121.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.006]
[2]娄奇,李为民.CaV1.2在心律失常中作用的研究进展[J].心血管病学进展,2019,(6):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
 LOU Qi,LI Weimin.CaV1.2 in Arrhythmias[J].Advances in Cardiovascular Diseases,2019,(11):919.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.020]
[3]李如意 刘延俊 杜荣品.心力衰竭时β3-肾上腺素能受体与心律失常的研究进展[J].心血管病学进展,2020,(1):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
 LI Ruyi,LIU Yanjun,DU Rongpin.β3-adrenergic Receptors and Arrhythmia in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(11):51.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.014]
[4]阿依尼尕尔·马木提 周贤惠.光遗传学技术在心律失常研究中的应用及进展[J].心血管病学进展,2020,(7):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
 Ayinigaer·Mamuti,ZHOU Xianhui.Application and Progress of Optogenetics in Study of Cardiac Arrhythmias[J].Advances in Cardiovascular Diseases,2020,(11):687.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.004]
[5]程家元 殷跃辉.沙库巴曲缬沙坦在心血管疾病中的临床应用与展望[J].心血管病学进展,2020,(9):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
 CHENG Jiayuan YIN Yuehui.Clinical Application and Prospect of Sacubitril Valsartan in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(11):914.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.007]
[6]查克岚 叶强.心电图成像在心律失常诊治中的研究进展[J].心血管病学进展,2020,(9):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
 ZHA Kelan,YE Qiang.Electrocardiographic Imaging in Arrhythmia Diagnosis and Treatment[J].Advances in Cardiovascular Diseases,2020,(11):930.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.011]
[7]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
 YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(11):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[8]林晶 吉庆伟 刘伶.致心律失常性心肌病的研究进展[J].心血管病学进展,2020,(12):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
 LING JingJI Qingwei,LIU Lin.Arrhythmogenic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(11):1247.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.006]
[9]李翠兰 刘文玲 高元丰.先天性与获得性长QT综合征诊断治疗现状[J].心血管病学进展,2021,(5):385.[doi:10.16806/j.cnki.issn.1004-3934.2021.0.001]
 LI Cuilan,LIU Wenling,GAO Yuanfeng.Diagnostic and Therapeutic Status for Congenital and Acquired Long QT Syndrome[J].Advances in Cardiovascular Diseases,2021,(11):385.[doi:10.16806/j.cnki.issn.1004-3934.2021.0.001]
[10]崔利军 王永德.脉冲电场用于心律失常消融的研究进展[J].心血管病学进展,2022,(1):10.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.003]
 CUI Lijun,WANG Yongde.Pulsed Electric Field for Ablation of Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(11):10.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.003]

更新日期/Last Update: 2024-12-02