[1]汪志诚 张子玥 邹紫莹 张代民.铁死亡介导KATP通道功能受损致心力衰竭机制的研究进展[J].心血管病学进展,2024,(6):562.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.019]
 WANG Zhicheng,ZHANG Ziyue,ZOU Ziying,et al.Dysfunctional Mechanism of K ATP Channel in Heart Failure Induced by Ferroptosis[J].Advances in Cardiovascular Diseases,2024,(6):562.[doi:10.16806/j.cnki.issn.1004-3934.2024.06.019]
点击复制

铁死亡介导KATP通道功能受损致心力衰竭机制的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年6期
页码:
562
栏目:
综述
出版日期:
2024-06-25

文章信息/Info

Title:
Dysfunctional Mechanism of K ATP Channel in Heart Failure Induced by Ferroptosis
作者:
汪志诚 张子玥 邹紫莹 张代民
(南京医科大学附属逸夫医院心内科,江苏 南京 211112)
Author(s):
WANG Zhicheng ZHANG Ziyue ZOU Ziying ZHANG Daimin
(Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211112, Jiangsu, China)
关键词:
KATP通道铁死亡心力衰竭心律失常
Keywords:
KATP channel ferroptosis heart failure arrhythmias
DOI:
10.16806/j.cnki.issn.1004-3934.2024.06.019
摘要:
心力衰竭是一种以临床预后差、死亡率高为主要特点的心血管疾病。KATP通道偶联能量代谢与细胞膜兴奋性,在可兴奋细胞中起着关键调控作用。KATP通道激活使膜电位超极化,减少早期后除极介导心律失常的发生。心肌细胞KATP通道在生理条件下活性较低,而在严重缺血和长时间缺氧导致腺苷三磷酸/腺苷二磷酸比值降低时激活,降低细胞兴奋性,从而阻止动作电位的产生和细胞收缩。铁死亡是一种新型细胞程序性死亡方式,其特征在于铁离子和脂质过氧化物代谢异常导致的膜系统中脂质过氧化物的致死性积累,研究发现铁死亡可能对KATP通道的功能造成损伤,恶化心脏功能。因此,现就铁死亡介导KATP通道功能改变在心力衰竭中调控机制进行综述。
Abstract:
Heart failure is a global cardiovascular disease characterized by poor clinical prognosis and high mortality. ATP-sensitive potassium channels (KATP channels) play pivotal roles in excitable cells and link cellular metabolism with membrane excitability. The action potential converts electricity into dynamics by ion channels mediated by ion exchange, which generates the systole that composes every heartbeat. Activation of the KATP channel repolarizes the membrane potential and decreases the occurrence of early after-depolarization-mediated arrhythmias. Cardiac K ATP channels have less function under physiological conditions and open during severe and prolonged anoxia due to reduced adenosine triphosphate/adenosine diphosphate ratio, lessening cellular excitability, thus preventing action potential generation and cell contraction. Accumulated evidence indicated that ferroptosis may cause damage to the K ATP channel. Hence , in the study, we describe the potential damage role of ferroptosis in the KATP channel, lucubrating the potential mechanisms and insight into the clinical therapeutic strategy

参考文献/References:

[1]Savarese G,Stolfo D,Sinagra G,et al. Heart failure with mid-range or mildly reduced ejection fraction[J]. Nat Rev Cardiol,2022,19(2):100-116.

[2]Kaneko H,Yano Y,Itoh H,et al. Association of blood pressure classification using the 2017 American College of Cardiology/American Heart Association blood pressure guideline with risk of heart failure and atrial fibrillation[J]. Circulation, 2021, 143(23): 2244-2253.

[3]Yu H,Zhang F,Yan P,et al. LARP7 protects against heart failure by enhancing mitochondrial biogenesis[J]. Circulation,2021,143(20):2007-2022.

[4]Noma A. ATP-regulated K+ channels in cardiac muscle [J]. Nature, 1983, 305(5930): 147-148.

[5]Kao YR, Will B. The cost of competency?[J]. Cell ,2023,186(4):685-687.

[6]Guo Y,Zhang H,Yan C,et al. Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction[J]. Nat Chem Biol,2023,19(4):468-477.

[7]Jiang X,Wu D,Jiang Z,et al. Protective effect of nicorandil on cardiac microvascular injury:role of mitochondrial integrity[J]. Oxid Med Cell Longev,2021,2021:4665632.

[8]Aziz Q,Chen J,Moyes AJ,et al. Vascular KATP channels protect from cardiac dysfunction and preserve cardiac metabolism during endotoxemia[J]. J Mol Med (Berl),2020,98(8):1149-1160.

[9]Pertiwi KR,Hillman RM,Scott CA,et al. Ischemia reperfusion injury produces, and ischemic preconditioning prevents, rat cardiac fibroblast differentiation: role of KATP channels[J]. J Cardiovasc Dev Dis,2019,6(2):22.

[10]Iguchi K,Saotome M,Yamashita K,et al. Pinacidil,a KATP channel opener,stimulates cardiac Na+/Ca2+ exchanger function through the NO/cGMP/PKG signaling pathway in guinea pig cardiac ventricular myocytes[J].Naunyn Schmiedebergs Arch Pharmacol,2019,392(8): 949-959.

[11]Bezerra Palácio P,Brito Lucas AM,Varlla de Lacerda Alexandre J,et al. Pharmacological and molecular docking studies reveal that glibenclamide competitively inhibits diazoxide-induced mitochondrial ATP-sensitive potassium channel activation and pharmacological preconditioning[J]. Eur J Pharmacol, 2021, 908: 174379.

[12]Paggio A,Checchetto V,Campo A,et al. Identification of an ATP-sensitive potassium channel in mitochondria[J]. Nature,2019,572(7771):609-613.

[13]Sakamoto K,Kurokawa J. Involvement of sex hormonal regulation of K+ channels in electrophysiological and contractile functions of muscle tissues [J]. J Pharmacol Sci, 2019,139(4):259-265.

[14]Bai XJ,Hao JT,Zheng RH,et al. Glucagon-like peptide-1 analog liraglutide attenuates pressure-overload induced cardiac hypertrophy and apoptosis through activating ATP sensitive potassium channels[J]. Cardiovasc Drugs Ther,2021,35(1):87-101.

[15]Zhang F,Zhou GH,An Q,et al. Decreased gene expression of KACh and K ATP channels in hyperthyroid rabbit atria[J]. Int J Clin Exp Pathol,2022,15(3):145-151.

[16]Singh GK,McClenaghan C,Aggarwal M,et al. A unique high-output cardiac hypertrophy phenotype arising from low systemic vascular resistance in cantu syndrome[J]. J Am Heart Assoc,2022,11(24):e027363.

[17]van Vlerken-Ysla L,Tyurina YY,Kagan VE,et al. Functional states of myeloid cells in cancer[J]. Cancer cell,2023,41(3):490-504.

[18]Cheu JW, Lee D, Li Q,et al. Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer[J]. Cell Mol Gastroenterol Hepatol,2023,16(1):133-159.

[19]Xu S,Li X,Li Y,et al. Neuroprotective effect of Dl-3-n-butylphthalide against ischemia-reperfusion injury is mediated by ferroptosis regulation via the SLC7A11/GSH/GPX4 pathway and the attenuation of blood-brain barrier disruption[J]. Front Aging Neurosci,2023,15:1028178.

[20]Costa I,Barbosa DJ,Benfeito S,et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases[J]. Pharmacol Ther,2023,244:108373.

[21]Huang L,Feng J,Zhu J,et al. A strategy of fenton reaction cycloacceleration for high performance ferroptosis therapy initiated by tumor microenvironment remodeling[J]. Adv Healthc Mater,2023,12(18):e2203362.

[22]Chen L,Shi D,Guo M. The roles of PKC-δ and PKC-ε in myocardial ischemia/reperfusion injury[J]. Pharmacol Res,2021,170:105716.

[23]Liu X, Wang Y, Zhang H, et al. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors[J]. Br J Pharmacol,2017,174(23):4464-4477.

[24]Rohde S,Sabri A,Kamasamudran R,et al. The alpha(1)-adrenoceptor subtype- and protein kinase C isoform-dependence of Norepinephrine’s actions in cardiomyocytes[J]. J Mol Cell Cardiol,2000,32(7):1193-1209.

[25]Huang S,Wang W,Li L,et al. P2X7 receptor deficiency ameliorates STZ-induced cardiac damage and remodeling through PKCβ and ERK[J]. Front Cell Dev Biol,2021,9:692028.

[26]Lin HJ,Mahendran R,Huang HY,et al. Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression[J]. J Ethnopharmacol,2022,284:114728.

[27]Zhou R,Chen Y,Li S,et al. TRPM7 channel inhibition attenuates rheumatoid arthritis articular chondrocyte ferroptosis by suppression of the PKCα-NOX4 axis[J]. Redox Biol,2022,55:102411.

[28]Zhang HL,Hu BX,Li ZL,et al. PKCβⅡ phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis [J]. Nat Cell Biol,2022,24(1):88-98.

[29]Chen X,Song X,Li J,et al. Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis[J]. Autophagy,2023,19(1):54-74.

[30]Zhang X, Zheng Q, Yue X, et al. ZNF498 promotes hepatocellular carcinogenesis by suppressing p53-mediated apoptosis and ferroptosis via the attenuation of p53 Ser46 phosphorylation[J]. J Exp Clin Cancer Res,2022,41(1):79.

[31]Popov SV,Mukhomedzyanov AV,Maslov LN,et al. The infarct-reducing effect of the δ(2) opioid receptor agonist deltorphin Ⅱ:the molecular mechanism[J]. Membranes (Basel),2023,13(1):63.

[32]Ning D,Yang X,Wang T,et al. Atorvastatin treatment ameliorates cardiac function and remodeling induced by isoproterenol attack through mitigation of ferroptosis[J]. Biochem Biophys Res Commun,2021,574:39-47.

[33]Sun L,Wang H,Yu S,et al. Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2?cells[J]. Int J Mol Med,2022,49(2):17.

[34]Zhang Z,Tang J,Song J,et al. Elabela alleviates ferroptosis,myocardial remodeling,fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling[J]. Free Radic Biol Med,2022,181:130-142.

[35]Liu J,Lane S,Lall R,et al. Circulating hemopexin modulates anthracycline cardiac toxicity in patients and in mice[J]. Sci Adv,2022,8(51):eadc9245.

[36]Zhang X,Zheng C,Gao Z,et al. SLC7A11/xCT prevents cardiac hypertrophy by inhibiting ferroptosis[J]. Cardiovasc Drugs Ther,2022,36(3):437-447.

[37]Li X,Li Z,Dong X,et al. Astragaloside Ⅳ attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis [J]. Phytother Res,2023,37(7):3042-3056.

[38]Zhou J,Yu T,Wu G,et al. Pyrroloquinoline quinone modulates YAP-related anti-ferroptotic activity to protect against myocardial hypertrophy[J]. Front Pharmacol,2022,13:977385.

[39]Li S,Wen P,Zhang D,et al. PGAM5 expression levels in heart failure and protection ROS-induced oxidative stress and ferroptosis by Keap1/Nrf2[J]. Clin Exp Hypertens,2023,45(1):2162537.

[40]Zhang LL,Chen GH,Tang RJ,et al. Levosimendan reverses cardiac malfunction and cardiomyocyte ferroptosis during heart failure with preserved ejection fraction via connexin 43 signaling activation[J]. Cardiovasc Drugs Ther,2023 Mar 7. doi:10.1007/s10557-023-07441-4.

相似文献/References:

[1]袁明明 赖松青 张泽宇 吴起才.铁死亡在脓毒症心脏功能损伤中的研究进展[J].心血管病学进展,2022,(1):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
 YUAN mingmingLAI SongqingZHANG ZeyuWU Qicai.Ferroptosis in Cardiac Function Impairment in Sepsis[J].Advances in Cardiovascular Diseases,2022,(6):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
[2]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
 PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(6):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[3]彭可玲 贾晓艳 王华 刘永铭.铁死亡与心力衰竭的研究进展[J].心血管病学进展,2022,(5):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
 PENG Keling,JIA Xiaoyan,WANG Hua,et al.Ferroptosis and Heart Failure[J].Advances in Cardiovascular Diseases,2022,(6):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
[4]邵亚兰 马继鹏 卢林鹤 熊祥 马燕燕 刘金成 杨剑.铁死亡与铁自噬在中的研究进展[J].心血管病学进展,2022,(9):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
 SHAO Yalan,MA Jipeng,LU Linhe,et al.Ferroptosis and Ferritinophagy in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(6):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
[5]孙悦 付松波 李亦兰.心肌细胞铁死亡及其检测方法[J].心血管病学进展,2023,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
 SUN Yue,FU Songbo,LI Yilan.Methods for the Detection of Ferroptosis in Cardiomyocytes[J].Advances in Cardiovascular Diseases,2023,(6):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
[6]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
 YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(6):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[7]王文杰 杨嘉馨 丁耀东 王可馨 牛佳龙 葛海龙.铁死亡在心血管疾病中的研究进展[J].心血管病学进展,2023,(5):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
 WANG Wenjie,YANG Jiaxin,DING Yaodong,et al.Ferroptosis in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(6):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
[8]于永丽 李艳 高奋.铁死亡在血管紧张素Ⅱ诱导的心肌肥大中的作用研究进展[J].心血管病学进展,2023,(12):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
 YU Yongli,LI Yan,GAO Fen.Ferroptosis in Angiotensin-Induced Cardiac hypertrophy[J].Advances in Cardiovascular Diseases,2023,(6):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
[9]李心瑶 陈俊 李灼.脓毒症心肌病的发病机制研究进展[J].心血管病学进展,2024,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
 LI Xinyao,CHEN Jun,LI Zhuo.Pathogenesis of Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2024,(6):44.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.012]
[10]赵 珂 陈晓姝 魏希进 张 娟 刘 杨 卞雨敬 袁 杰.铁死亡的调控机制及其在蒽环类药物心脏毒性中的研究进展[J].心血管病学进展,2024,(3):261.[doi:10.16806/j.cnki.issn.1004-3934.202.03.016]
 First Clinical Medical College,Shandong University of Traditional Chinese Medicine,Jinan 0000,et al.Regulatory Mechanism of Ferroptosis and Its Progress in Anthracycline-Induced Cardiotoxicity[J].Advances in Cardiovascular Diseases,2024,(6):261.[doi:10.16806/j.cnki.issn.1004-3934.202.03.016]

更新日期/Last Update: 2024-07-26