[1]李铭,高继先,吴冰,等.卡格列净减轻心肌梗死后细胞凋亡及炎症反应改善预后[J].心血管病学进展,2024,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.018]
 LI Ming,GAO Jixian,WU Bing,et al.Canagliflozin alleviates apoptosis and inflammation after myocardial infarction, and improves prognosis[J].Advances in Cardiovascular Diseases,2024,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.018]
点击复制

卡格列净减轻心肌梗死后细胞凋亡及炎症反应改善预后()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年4期
页码:
368
栏目:
论著
出版日期:
2024-04-25

文章信息/Info

Title:
Canagliflozin alleviates apoptosis and inflammation after myocardial infarction, and improves prognosis
作者:
李铭高继先吴冰刘小熊夏豪
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060)
Author(s):
LI MingGAO JixianWU BingLIU XiaoxiongXIA Hao
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)
关键词:
卡格列净炎症反应心肌梗死细胞凋亡
Keywords:
Canagliflozin Inflammatory response Myocardial infarction Cell apoptosis
DOI:
10.16806/j.cnki.issn.1004-3934.2024.04.018
摘要:
目的??/b> 探究在急性心肌梗死后使用卡格列净(Canagliflozin)对心脏炎症反应及细胞凋亡的作用。方法?#160 本研究选用了15只8-10周龄 C57/BL6小鼠(SPF级),用抽签法随机抽取5只小鼠为Sham组(假手术+生理盐水灌胃),剩余10只小鼠通过结扎左冠状动脉前降支的方法制作MI模型,制作成功后的10只MI小鼠随机分为2组:MI组(生理盐水灌胃)、MI+Cana组(Canagliflozin灌胃),每组5只。MI+Cana组小鼠以20mg/kg/d卡格列净灌胃4周,Sham组及MI组则使用同等体积生理盐水灌胃4周。4周后,使用小鼠超声机测量左心室收缩末期内径(LVIDs)及左心室射血分数(LVEF)。苏木精(HE染色)、Tunel染色 用于明确心脏结构及心梗后细胞凋亡状况。IF免疫荧光染色用于检测心梗后心脏炎症反应程度。Wester blotting用于检测炎症及凋亡相关蛋白表达水平。 结果??#160与MI组相比,Cana+MI组左心室射血分数、短轴缩短率、梗死面积均降低。Tunel染色显示,Cana+MI组小鼠心肌梗死边缘区凋亡细胞数量较MI组显著降低,相应促凋亡蛋白Bax表达降低,抑凋亡蛋白Bcl-2表达升高。Cana+MI组小鼠CD3阳性T细胞、F4 -80阳性巨噬细胞和LY6G阳性中性粒细胞数量较MI组明显降低,相关蛋白p-P65、p-IκBα表达量明显降低。结论??格列净抑制了心肌梗死后心脏炎症反应,减轻了细胞凋亡。
Abstract:
Objective??#160To investigate the effect of canagliflozin on cardiac inflammatory response and apoptosis after acute myocardial infarction. Methods?#160 This study selected 15 C57/BL6 mice (SPF grade) aged 8-10 weeks, and randomly selected 5 mice as the Sham group (sham surgery+saline gavage) using a lottery method. The remaining 10 mice were used to create an MI model by ligating the anterior descending branch of the left coronary artery. After successful production, the 10 MI mice were randomly divided into two groups: the MI group (saline gavage) and the MI+Cana group (Canagliflozin gavage), with 5 mice in each group. The mice in the MI+Cana group were gavaged with 20mg/kg/d of Cargliflozin for 4 weeks, while the Sham and MI groups were gavaged with the same volume of physiological saline for 4 weeks. After 4 weeks, left ventricular end systolic diameter (LVIDs) and left ventricular ejection fraction (LVEF) were measured using a mouse ultrasound machine. Hematoxylin (HE staining) and Tunel staining are used to clarify the cardiac structure and cell apoptosis status after myocardial infarction. IF immunofluorescence staining is used to detect the degree of cardiac inflammatory response after myocardial infarction. Wester blotting is used to detect the expression levels of inflammation and apoptosis related proteins. Result??#160Compared with the MI group, the Cana+MI group showed a decrease in left ventricular ejection fraction, short axis shortening rate, and infarct area. Tunel staining showed that the number of apoptotic cells in the myocardial infarction margin area of the Cana+MI group mice was significantly reduced compared to the MI group, with a corresponding decrease in the expression of pro apoptotic protein Bax and an increase in the expression of anti apoptotic protein Bcl-2. The number of CD3 positive T cells, F4-80 positive macrophages, and LY6G positive neutrophils in the Cana+MI group mice was significantly reduced compared to the MI group, with associated proteins p-P65, p-I κ B α The expression level was significantly reduced. Conclusion??argliflozin inhibits cardiac inflammatory response after myocardial infarction and reduces cell apoptosis

参考文献/References:

[1] Abdollahi E,Keyhanfar F,Delbandi AA,et al. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages[J]. Eur J Pharmacol,2022,918:174715.[2] Arab HH,Safar MM,Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced parkinson’s disease rat model[J]. ACS Chem Neurosci,2021,12(4):689-703.[3] Arab HH,Al-Shorbagy MY,Saad MA. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats:targeting AMPK/mTOR,HMGB1/RAGE and Nrf2/HO-1 pathways[J]. Chem Biol Interact,2021,335:109368.[4] Dasari D,Bhat A,Mangali S,et al. Canagliflozin and dapagliflozin attenuate glucolipotoxicity-induced oxidative stress and apoptosis in cardiomyocytes via inhibition of sodium-glucose cotransporter-1[J]. ACS Pharmacol Transl Sci,2022,5(4):216-225.[5] El-Sherbiny M,El-Shafey M,Said E,et al. Dapagliflozin,liraglutide,and their combination attenuate diabetes mellitus-associated hepato-renal injury-insight into oxidative injury/inflammation/apoptosis modulation[J]. Life (Basel),2022,12(5):764.[6] Frangogiannis NG,Rosenzweig A. Regulation of the inflammatory response in cardiac repair[J]. Circ Res,2012,110(1):159-173.[7] Frangogiannis NG. The inflammatory response in myocardial injury,repair,and remodelling[J]. Nat Rev Cardiol,2014,11(5):255-265.[8] Gulati R,Behfar A,Narula J,et al. Acute myocardial infarction in young individuals[J]. Mayo Clinic Proceedings,2020,95(1):136-156.[9] Hsieh PL,Chu PM,Cheng HC,et al. Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress,cardiac remodeling,and inflammation[J]. Int J Mol Sci,2022,23(17):10146.[10] Kologrivova I,Shtatolkina M,Suslova T,et al. Cells of the immune system in cardiac remodeling:main players in resolution of inflammation and repair after myocardial infarction[J]. Front Immunol,2021,12:664457.[11] Kubota A,Frangogiannis NG. Macrophages in myocardial infarction[J]. Am J Physiol Cell Physiol,2022,323(4):C1304-C1324.[12] Li M,Zheng H,Han Y,et al. LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction[J]. Theranostics,2021,11(19):9397-9414.[13] Lim V G,Bell R M,Arjun S,et al. Sglt2 inhibitor,canagliflozin,attenuates?yocardial infarction in the?iabetic?nd nondiabetic heart[J]. JACC:Basic to Translational Science,2019,4(1):15-26.[14] Ma L,Zou R,Shi W,et al. Sglt2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the xo-serca2-camkii-coffilin pathways[J]. Theranostics,2022,12(11):5034-5050.[15] Neal B,Perkovic V,Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med,2017,377(21):2099.[16] Ong SB,Hernandez-Resendiz S,Crespo-Avilan GE,et al. Inflammation following acute myocardial infarction:multiple players,dynamic roles,and novel therapeutic opportunities[J]. Pharmacol Ther,2018,186:73-87.[17] R?holm K,Figtree G,Perkovic V,et al. Canagliflozin and heart failure in type 2 diabetes mellitus:results from the canvas program[J]. Circulation,2018,138(5):458-468.[18] Sarraju A,Li J,Cannon C P,et al. Effects of canagliflozin on cardiovascular,renal,and safety outcomes in participants with type 2 diabetes and chronic kidney disease according to history of heart failure:results from the credence trial[J]. Am Heart J,2021,233:141-148.[19] Spertus JA,Birmingham MC,Nassif M,et al. The SGLT2 inhibitor canagliflozin in heart failure:the CHIEF-HF remote, patient-centered randomized trial[J]. Nat Med,2022,28(4):809-813.[20] Zhang Q,Wang L,Wang S,et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther,2022,7(1):78.[21] Zinman B,Wanner C,Lachin JM,et al. Empagliflozin,cardiovascular outcomes,and mortality in type 2 diabetes[J]. N Engl J Med,2015,373(22):2117-2128.[22] Zuo Q,Zhang G,He L,et al. Canagliflozin attenuates hepatic steatosis and atherosclerosis progression in western diet-fed apoe-knockout mice[J]. Drug Des Devel Ther,2022,16:4161-4177.

相似文献/References:

[1]王山山 梁兆光.炎症反应与心房颤动的关系[J].心血管病学进展,2019,(5):770.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.026]
 WANG Shanshan,LIANG Zhaoguang.Inflammation and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(4):770.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.026]
[2]李文松 张润峰.脂蛋白相关磷脂酶与冠心病的相关性研究进展[J].心血管病学进展,2020,(1):85.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.023]
 LI Wensong ZHANG Runfeng.Lipoprotein-associated Phospholipase A2 and Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(4):85.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.023]
[3]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(4):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[4]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
 WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(4):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[5]王菲 卢新政.卡格列净对2型糖尿病患者心血管保护作用的研究进展[J].心血管病学进展,2020,(3):231.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.004]
 WANG Fei,LU Xinzheng.Cardiovascular Protection of Canagliflozin in Type 2 Diabetes Patients[J].Advances in Cardiovascular Diseases,2020,(4):231.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.004]
[6]李德霞 李琳.白介素-1β与心力衰竭的研究进展[J].心血管病学进展,2020,(6):591.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.008]
 LI Dexia LI Lin.Interleukin-1 and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(4):591.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.008]
[7]张彩霞 曾彬 廖小婷.心肌梗死模型中三碘甲状腺原氨酸对心肌的保护作用研究[J].心血管病学进展,2020,(11):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
 ZHANG Caixia,ZENG Bin,LIAO Xiaoting.Protective Effect of Triiodothyronine on Myocardium in Myocardial Infarction Model[J].Advances in Cardiovascular Diseases,2020,(4):1209.[doi:10.16806/j.cnki.issn.1004-3934.20.11.000]
[8]肖秋蓓 王志维.急性主动脉夹层并发急性肺损伤研究进展[J].心血管病学进展,2020,(12):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
 XIAO QiubeiWANG Zhiwei.Acute Aortic Dissection Complicated with Acute Lung Injury[J].Advances in Cardiovascular Diseases,2020,(4):1260.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.009]
[9]蔡一帆 董倩 俞坤武 曾秋棠.炎症细胞参与腹主动脉瘤的研究进展[J].心血管病学进展,2022,(7):630.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 CAI Yifan,Dong Qian,YU Kunwu,et al.Pathogenesis of Inflammatory Cell in Abdominal Aortic Aneurysm[J].Advances in Cardiovascular Diseases,2022,(4):630.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[10]张国贤 彭瑜 张钲.冠状动脉内皮细胞线粒体损伤在心肌梗死中的研究进展[J].心血管病学进展,2023,(3):203.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.003]
 ZHANG Guoxian,PENG Yu,ZHANG Zheng.Mitochondrial Injury of Coronary Endothelial Cells in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2023,(4):203.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.003]

更新日期/Last Update: 2024-05-31