参考文献/References:
[1] Tsarova K,Morgan AE,Melendres-Groves L,et al. Imaging in pulmonary vascular disease-understanding right ventricle-pulmonary artery coupling. comprehensive physiology[J]. Compr Physiol,2022,12(4):3705-3730.
[2] Humbert M,Kovacs G,Hoeper MM,et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Heart J,2022,43(38):3618-3731.
[3] Ho ATN,Bellamy N,Naydenov SK. Trends in mortality of acute pulmonary embolism[J]. Semin Respir Crit Care Med,2021,42(2):171-175.
[4] Rajpurkar P,Chen E,Banerjee O,et al. AI in health and medicine[J]. Nat Med,2022,28(1):31-38.
[5] Johnson KW,Torres Soto J,Glicksberg BS,et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol,2018,71(23):2668-2679.
[6] Hulsen T,Friedeck? D,Renz H,et al. From big data to better patient outcomes[J]. Clin Chem Lab Med,2022 Dec 22,61(4):580-586.
[7] Kaplan A,Cao H,FitzGerald JM,et al. Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis[J]. J Allergy Clin Immunol Pract,2021,9(6):2255-2261.
[8] Darcy AM,Louie AK,Roberts LW. Machine learning and the profession of medicine[J]. JAMA,2016,315(6):551-552.
[9] Jalamangala Shivananjaiah SK,Kumari S,Majid I,et al. Predicting near-term glaucoma progression:an artificial intelligence approach using clinical free-text notes and data from electronic health records[J]. Front Med (Lausanne),2023,10:1157016.
[10] Sagheb E,Wi CI,Yoon J,et al. Artificial intelligence assesses clinicians’ adherence to asthma guidelines using electronic health records[J]. J Allergy Clin Immunol Pract,2022,10(4):1047-1056.
[11] McMaster C,Bird A,Liew DFL,et al. Artificial intelligence and deep learning for rheumatologists[J]. Arthritis Rheumatol,2022,74(12):1893-1905.
[12] Khosravi B,Rouzrokh P,Erickson BJ. Getting more out of large databases and EHRs with natural language processing and artificial intelligence:the future is here[J]. J Bone Joint Surg Am ,2022,104(Suppl 3):51-55.
[13] Jiang F,Jiang Y,Zhi H,et al. Artificial intelligence in healthcare:past,present and future[J]. Stroke Vasc Neurol,2017,2(4):230-243.
[14] Elkin PL,Mullin S,Mardekian J,et al. Using artificial intelligence with natural language processing to combine electronic health record’s structured and free text data to identify nonvalvular atrial fibrillation to decrease strokes and death:evaluation and case-control study[J]. J Med Internet Res,2021,23(11):e28946.
[15] Johns CS,Wild JM,Rajaram S,et al. Current and emerging imaging techniques in the diagnosis and assessment of pulmonary hypertension[J]. Expert Rev Respir Med,2018,12(2):145-160.
[16] Kirby M,Smith BM. Quantitative CT Scan Imaging of the airways for diagnosis and management of lung disease[J]. Chest,2023,164(5):1150-1158.
[17] Dwivedi K,Sharkey M,Condliffe R,et al. Pulmonary hypertension in association with lung disease:quantitative CT and artificial intelligence to the rescue? state-of-the-art review[J]. Diagnostics (Basel),2021,11(4):679.
[18] Watadani T,Sakai F,Johkoh T,et al. Interobserver variability in the CT assessment of honeycombing in the lungs[J]. Radiology,2013,266(3):936-944.
[19] Fortmeier V,Lachmann M,K?rber MI,et al. Solving the pulmonary hypertension paradox in patients with severe tricuspid?regurgitation by employing artificial intelligence[J]. JACC Cardiovasc Interv,2022,15:381-394.
[20] Sollini M,Antunovic L,Chiti A,et al. Towards clinical application of image mining:a systematic review on artificial intelligence and radiomics[J]. Eur J Nucl Med Mol Imaging,2019,46(13):2656-2672.
[21] Zhou C,Chan H-P,Sahiner B,et al. Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications[J]. Medical Physics,2007,34:4567-4577.
[22] Otani N,Watanabe R,Tomoe T,et al. Pathophysiology and Treatment of Chronic Thromboembolic Pulmonary Hypertension[J]. Int J Mol Sci,2023,24(4):3979.
[23] Nardelli P,Jimenez-Carretero D,Bermejo-Pelaez D,et al. Pulmonary artery-vein classification in CT images using deep learning[J]. IEEE Trans Med Imaging,2018,37(11):2428-2440.
[24] Bellasi A,Raggi P. What electronic health records can and cannot tell us in the era of big data[J]. Atherosclerosis,2022,358:55-56.
[25] Knight R,Walker V,Ip S,et al. Association of COVID-19 with major arterial and venous thrombotic diseases:a population-wide cohort study of 48 million adults in England and Wales[J]. Circulation,2022,146(12):892-906.
[26] Tilliridou V,Kirkbride R,Dickinson R,et al. Pulmonary embolism severity before and during the COVID-19 pandemic[J]. Br J Radiol,2021,94(1123):20210264.
[27] Schuler KP,Hemnes AR,Annis J,et al. An algorithm to identify cases of pulmonary arterial hypertension from the electronic medical record[J]. Respir Res,2022,23(1):138.
[28] Bikdeli B,Lo YC,Khairani CD,et al. Developing validated tools to identify pulmonary embolism in electronic databases:rationale and design of the PE-EHR+ study[J]. Thromb Haemost,2023,123(6):649-662.
[29] Tian Z,Sun S,Eguale T,et al Automated extraction of VTE events from narrative radiology reports in electronic health records :a validation study[J]. Med Care,2017 Oct,55(10):e73-e80.
[30] Krebs K,Milani L. Harnessing the power of electronic health records and genomics for drug discovery[J]. Annu Rev Pharmacol Toxicol,2023,63:65-76.
[31] Southgate L,Machado RD,Gr?f S,et al. Molecular genetic framework underlying pulmonary arterial hypertension[J]. Nat Rev Cardiol,2020,17(2):85-95.
[32] Liang H,Tsui BY,Ni H,et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence[J]. Nat Med,2019,25(3):433-438.
[33] Lello L,Avery SG,Tellier L,et al. Accurate genomic prediction of human height[J]. Genetics,2018,210(2):477-497.
[34] Dias R,Torkamani A. Artificial intelligence in clinical and genomic diagnostics[J]. Genome Med,2019,11(1):70.
[35] Jaganathan K,Kyriazopoulou Panagiotopoulou S,McRae JF,et al. Predicting splicing from primary sequence with deep learning[J]. Cell,2019,176(3):535-548.e24.
[36] Wang J,Cao H,Zhang JZH,et al. Computational protein design with deep learning neural networks[J]. Sci Rep,2018,8(1):6349.
[37] Zhang N,Zhao X,Li J,Huang L,et al. Machine learning based on computed tomography pulmonary angiography in evaluating pulmonary artery pressure in patients with pulmonary hypertension[J]. J Clin Med,2023,12(4):1297.
[38] Kogan E,Didden EM,Lee E,et al. A machine learning approach to identifying patients with pulmonary hypertension using real-world electronic health records[J]. Int J Cardiol,2023,374:95-99.
[39] Swift AJ,Lu H,Uthoff J,et al. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis[J]. Eur Heart J Cardiovasc Imaging,2021,22(2):236-245.
[40] Bauer Y,de Bernard S,Hickey P,et al. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis:machine learning on proteomics from the DETECT cohort[J]. Eur Respir J,2021,57(6):2002591.
[41] Scott JA,Palmer EL. Neural network analysis of ventilation-perfusion lung scans[J]. Radiology,1993,186(3):661-664.
[42] Wildman-Tobriner B,Ngo L,Mammarappallil JG,et al. Missed incidental pulmonary embolism :harnessing artificial intelligence to assess prevalence and improve quality improvement opportunities[J]. J Am Coll Radiol,2021,18(7):992-999.
[43] Kolossváry M,Raghu VK,Nagurney JT,et al. Deep learning analysis of chest radiographs to triage patients with acute chest pain syndrome[J]. Radiology,2023,306(2):e221926.
[44] Batra K,Xi Y,Al-Hreish KM,et al. Detection of incidental pulmonary embolism on conventional contrast-enhanced chest CT:comparison of an artificial intelligence algorithm and clinical reports[J]. AJR Am J Roentgenol,2022,219(6):895-902.
[45] Liu W,Liu M,Guo X,et al. Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning[J]. Eur Radiol,2020,30(6):3567-3575.
相似文献/References:
[1]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[2]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(1):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[3]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[4]王苏淮 李晶洁.机器学习在心血管疾病中的临床应用进展[J].心血管病学进展,2021,(2):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
WANG Suhuai,LI Jingjie.Clinical Applications of Machine Learning in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(1):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
[5]兰贝蒂 王瑞涛.人工智能及3D打印技术在心血管疾病诊疗中的应用进展[J].心血管病学进展,2021,(4):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
LAN Beidi,WANG Ruitao.Application Progress of Artificial Intelligence and 3D Printing Technology in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(1):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
[6]王继航 田进文 王建 郭毅 周星儿 付振虹 沈明志 刘亮.基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展[J].心血管病学进展,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
WANG JihangTIAN JinwenWANG JianGUO YiZHOU XingerGUO utingFU ZhenhongSHEN MingzhiLIU Liang.Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things[J].Advances in Cardiovascular Diseases,2021,(1):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
[7]黄佳星 王猛 江洪.人工智能神经活性分析研究进展[J].心血管病学进展,2022,(6):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
HUANG JiaxingWANG MengJIANG Hong.Artificial Intelligence and Neural Activity Analysis[J].Advances in Cardiovascular Diseases,2022,(1):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
[8]孜拉来·艾尼瓦尔 周贤惠.无症状性心房颤动检测设备的研究进展[J].心血管病学进展,2022,(7):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
Zilalai AiniwarZHOU Xianhui.Detection Devices of Asymptomatic Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(1):624.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[9]陈忠秀 李娅姣 李春梅 李晨.无导丝虚拟血流储备分数技术在稳定性冠心病介入治疗中的指导价值[J].心血管病学进展,2022,(10):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
CHEN Zhongxiu,LI Yajiao,LI Chunmei,et al.The Value of Wireless Virtual Fractional Flow Reserve in Guiding Percutaneous Coronary Intervention in Stable Coronary Artery Disease[J].Advances in Cardiovascular Diseases,2022,(1):865.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.001]
[10]秦地茂 李梦依 吴霜 邓祁 姚尧 刘英杰 郑颖.人工智能在心房颤动预测中的价值[J].心血管病学进展,2022,(10):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]
QIN Dimao,LI Mengyi,WU Shuang,et al.Artificial Intelligence for Predicting Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(1):874.[doi:10.16806/j.issn.1004-3934.2022.10.003]