参考文献/References:
[1] Kornej J,B?rschel CS,Benjamin EJ,et al. Epidemiology of atrial fibrillation in the 21st century:novel methods and new insights[J]. Circ Res,2020,127(1):4-20.
[2] Healey JS,Oldgren J,Ezekowitz M,et al. Occurrence of death and stroke in patients in 47 countries 1 year after presenting with atrial fibrillation:a cohort study[J]. Lancet,2016,388(10050):1161-1169.
[3] Montaigne D,Marechal X,Lefebvre P,et al. Mitochondrial dysfunction as an arrhythmogenic substrate:a translational proof-of-concept study in patients with metabolic syndrome in whom post-operative atrial fibrillation develops[J]. J Am Coll Cardiol,2013,62(16):1466-1473.
[4] Bravo-San Pedro JM,Kroemer G,Galluzzi L. Autophagy and mitophagy in cardiovascular disease[J]. Circ Res,2017,120(11):1812-1824.
[5] Onishi M,Yamano K,Sato M,et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J,2021,40(3):e104705.
[6] Zhou S,Dai W,Zhong G,et al. Impaired mitophagy:a new potential mechanism of human chronic atrial fibrillation[J]. Cardiol Res Pract,2020,2020:6757350.
[7] Zhu Y,Gu Z,Shi J,et al. Vaspin attenuates atrial abnormalities by promoting ULK1/FUNDC1-mediated mitophagy[J]. Oxid Med Cell Longev,2022,2022:3187463.
[8] Wiersma M,van Marion DMS,Wüst RCI,et al. Mitochondrial dysfunction underlies cardiomyocyte remodeling in experimental and clinical atrial fibrillation[J]. Cells,2019,8(10):1202.
[9] Ozcan C,Li Z,Kim G,et al. Molecular mechanism of the association between atrial fibrillation and heart failure includes energy metabolic dysregulation due to mitochondrial dysfunction[J]. J Card Fail,2019,25(11):911-920.
[10] Pabon MA,Manocha K,Cheung JW,et al. Linking arrhythmias and adipocytes:insights,mechanisms,and future directions[J]. Front Physiol,2018,9:1752.
[11] Coulthard LR,White DE,Jones DL,et al. p38(MAPK):stress responses from molecular mechanisms to therapeutics[J]. Trends Mol Med,2009,15(8):369-379.
[12] Marber MS,Rose B,Wang Y. The p38 mitogen-activated protein kinase pathway--a potential target for intervention in infarction,hypertrophy,and heart failure[J]. J Mol Cell Cardiol,2011,51(4):485-490.
[13] Trempolec N,Dave-Coll N,Nebreda AR. SnapShot:p38 MAPK substrates[J]. Cell,2013,152(4):924-924.e1.
[14] Cuadrado A,Nebreda AR. Mechanisms and functions of p38 MAPK signalling[J]. Biochem J,2010,429(3):403-417.
[15] Wagner EF,Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development[J]. Nat Rev Cancer,2009,9(8):537-549.
[16] Sang W,Wang L,Yan X,et al. Establishment of risk model and analysis of immunoinfiltration based on mitophagy-related associated genes in atrial fibrillation[J]. J Inflamm Res,2023,16:2561-2583.
[17] Li SN,Zhang JR,Zhou L,et al. Sacubitril/valsartan decreases atrial fibrillation susceptibility by inhibiting angiotensinⅡ-induced atrial fibrosis through p-Smad2/3,p-JNK,and p-p38 signaling pathways[J]. J Cardiovasc Transl Res,2022,15(1):131-142.
[18] Liang X,Zhang Q,Wang X,et al. Reactive oxygen species mediated oxidative stress links diabetes and atrial fibrillation[J]. Mol Med Rep,2018,17(4):4933-4940.
[19] Liao J,Wu Q,Qian C,et al. TRPV4 blockade suppresses atrial fibrillation in sterile pericarditis rats[J]. JCI Insight,2020,5(23):e137528.
[20] Wu Q,Liu H,Liao J,et al. Colchicine prevents atrial fibrillation promotion by inhibiting IL-1β-induced IL-6 release and atrial fibrosis in the rat sterile pericarditis model[J]. Biomed Pharmacother,2020,129:110384.
[21] Youn JY,Zhang J,Zhang Y,et al. Oxidative stress in atrial fibrillation:an emerging role of NADPH oxidase[J]. J Mol Cell Cardiol,2013,62:72-79.
[22] Chen Y,Surinkaew S,Naud P,et al. JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate[J]. Cardiovasc Res,2017,113(3):310-320.
[23] Hasin T,Elhanani O,Abassi Z,et al. Angiotensin II signaling up-regulates the immediate early transcription factor ATF3 in the left but not the right atrium[J]. Basic Res Cardiol,2011,106(2):175-187.
[24] Xiao Z,Reddy DPK,Xue C,et al. Profiling of miR-205/P4HA3 following angiotensinⅡ-induced atrial fibrosis:implications for atrial fibrillation[J]. Front Cardiovasc Med,2021,8:609300.
[25] Wang C,Li Y,Yi Y,et al. Hippocampal microRNA-26a-3p deficit contributes to neuroinflammation and behavioral disorders via p38 MAPK signaling pathway in rats[J]. J Neuroinflammation,2022,19(1):283.
[26] Ye Q,Zeng C,Luo C,et al. Ferrostatin-1 mitigates cognitive impairment of epileptic rats by inhibiting P38 MAPK activation[J]. Epilepsy Behav,2020,103(Pt A):106670.
[27] 程育博,邢继岩. 超声心动图Teichholtz校正公式与左心室造影测量左室射血分数的对比分析[J]. 中西医结合心脑血管病杂志,2010,8(9):1147-1148.
[28] 韩亚凡,汤宝鹏,王菲菲,等. 低强度耳屏迷走神经刺激通过减轻心房内质网应激缓解长程起搏诱导的心房颤动[J]. 心血管病学进展,2023,44(5):470-475.
[29] Molkentin JD,Bugg D,Ghearing N,et al. Fibroblast-specific genetic manipulation of p38 mitogen-activated protein kinase in vivo reveals its central regulatory role in fibrosis[J]. Circulation,2017,136(6):549-561.
[30] Szokodi I,Kerkel? R,Kubin AM,et al. Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility[J]. Circulation,2008,118(16):1651-1658.
[31] Liu Q,Hofmann PA. Modulation of protein phosphatase 2a by adenosine A1 receptors in cardiomyocytes:role for p38 MAPK[J]. Am J Physiol Heart Circ Physiol,2003,285(1):H97-H103.
[32] Yao J,Ke J,Zhou Z,et al. Combination of HGF and IGF-1 promotes connexin 43 expression and improves ventricular arrhythmia after myocardial infarction through activating the MAPK/ERK and MAPK/p38 signaling pathways in a rat model[J]. Cardiovasc Diagn Ther,2019,9(4):346-354.
[33] Ballard-Croft C,Kristo G,Yoshimura Y,et al. Acute adenosine preconditioning is mediated by p38 MAPK activation in discrete subcellular compartments[J]. Am J Physiol Heart Circ Physiol,2005,288(3):H1359-H1366.
[34] Wall JA,Wei J,Ly M,et al. Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator,MAP kinase kinase 6[J]. Am J Physiol Heart Circ Physiol,2006,291(5):H2462-H2472.
[35] Yokota T,Wang Y. p38 MAP kinases in the heart[J]. Gene,2016,575(2 Pt 2):369-376.
[36] Madkour MM,Anbar HS,El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors[J]. Eur J Med Chem,2021,213:113216.
[37] Yuan Y,Zhao J,Yan S,et al. Autophagy:a potential novel mechanistic contributor to atrial fibrillation[J]. Int J Cardiol,2014,172(2):492-494.
[38] Yuan Y,Zhao J,Gong Y,et al. Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel[J]. Cell Death Dis,2018,9(9):873.
[39] Wiersma M,Meijering RAM,Qi XY,et al. Endoplasmic reticulum stress is associated with autophagy and cardiomyocyte remodeling in experimental and human atrial fibrillation[J]. J Am Heart Assoc,2017,6(10):e006458.
相似文献/References:
[1]贺鹏康,周菁.心房颤动治疗新技术——冷冻球囊消融[J].心血管病学进展,2016,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
HE Pengkang,ZHOU Jing.Cryoballoon Ablation, A Novel Technology for Atrial Fibrillation Treatment[J].Advances in Cardiovascular Diseases,2016,(4):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
[2]都明辉,施海峰*,佟佳宾,等.心房颤动消融相关性无症状性脑缺血[J].心血管病学进展,2016,(1):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
DU Minghui,SHI Haifeng*,TONG Jiabin,et al.Silent Cerebral Ischemia Related to Atrial Fibrillation Ablation[J].Advances in Cardiovascular Diseases,2016,(4):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
[3]郑环杰,综述,肖骅,等.心房颤动抗栓治疗研究进展[J].心血管病学进展,2016,(2):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
ZHENG Huanjie,XIAO Hua.Progress of Antithrombotic Therapy in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
[4]张清,综述,罗素新,等.新型Xa 因子抑制剂———依度沙班在心房颤动患者抗凝治疗中的研究进展[J].心血管病学进展,2016,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
ZHANG Qing,LUO Suxin,TANG Jiong.Novel Factor Xa Inhibitors—Edoxaban in Prevention of Stroke in
Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
[5]胡红玲,综述,罗素新,等.预防非瓣膜性心房颤动性脑卒中的治疗新进展[J].心血管病学进展,2016,(3):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
HU Hongling,LUO Suxin.New Progress in the Treatment for Cerebral Apoplexy of Nonvalvular
Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
[6]王超,杨国澍,综述,等.关附甲素治疗心房颤动的研究进展[J].心血管病学进展,2016,(3):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
WANG Chao,YANG Guoshu,CAI Lin,et al.Research Progress of the Treatment of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
[7]徐小东,综述,杨东辉,等.决奈达隆治疗心房颤动的现状及展望[J].心血管病学进展,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
XU Xiaodong,YANG Donghui.Status and Prospect of Dronedarone in Treating Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
[8]张莎,储国俊,吴弘.经导管左心耳封堵术的临床应用进展[J].心血管病学进展,2015,(5):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
ZHANG Sha,CHU Guojun,WU Hong.Clinial Application Advances in Left Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2015,(4):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
[9]汪俊,杨浩.心房颤动射频消融的术式演变[J].心血管病学进展,2015,(5):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
WANG Jun,YANG Hao.Evolution of Radiofrequency Ablation of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2015,(4):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
[10]赵璐,苏立.心房颤动与离子通道重构研究进展[J].心血管病学进展,2015,(5):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]
ZHAO Lu,SU Li.Research Progress of Atrial Fibrillation and Ion Channel Remodeling[J].Advances in Cardiovascular Diseases,2015,(4):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]