[1]李蓝鸽 郑雅璇 吕婷婷 李锟 孔令云 周博达 刘芳 张萍 薛亚军.微RNA在冠状动脉微栓塞后心肌损伤的研究进展[J].心血管病学进展,2024,(8):747.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.016]
 LI Lange,ZHENG Yaxuan,LYU Tingting,et al.MicroRNA-mediated Regulation of Cardiomyocyte Injury Following Coronary Microembolisation[J].Advances in Cardiovascular Diseases,2024,(8):747.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.016]
点击复制

微RNA在冠状动脉微栓塞后心肌损伤的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年8期
页码:
747
栏目:
综述
出版日期:
2024-08-25

文章信息/Info

Title:
MicroRNA-mediated Regulation of Cardiomyocyte Injury Following Coronary Microembolisation
作者:
李蓝鸽 12 郑雅璇12 吕婷婷1 李锟1 孔令云1 周博达1 刘芳1 张萍1 薛亚军1
(1.清华大学附属北京清华长庚医院心血管中心,北京 102218;2.清华大学医学院 北京 100083)
Author(s):
LI Lange12ZHENG Yaxuan12LYU Tingting 1LI Kun1KONG Lingyun1ZHOU Boda1LIU Fang1ZHANG Ping1XUE Yajun1
(1.Department of Cardiovascular Medicine,Beijing Tsinghua Changgung Hospital,School of Clinical Medicine,Tsinghua University,Beijing 102218,China2.School of MedicineTsinghua UniversityBeijing 100083China)
关键词:
冠状动脉微栓塞微RNA炎症反应凋亡自噬
Keywords:
Coronary microembolization MicroRNAInflammatory Apoptosis Autophagy
DOI:
10.16806/j.cnki.issn.1004-3934.2024.08.016
摘要:
冠状动脉微栓塞(CME)多发生于急性冠脉综合征患者,因手术相关的动脉粥样硬化斑块破裂引发,可导致心律失常、冠状动脉储备减少以及心脏收缩功能障碍。CME后常规扩张冠状动脉、抗血小板和直接抽吸血栓的临床疗效不理想。研究发现,微RNA(miRNA)特异结合炎症反应、凋亡、自噬相关信使RNA的3?-UTR,最终影响CME预后。深入研究miRNA在CME发生和发展中的作用,不仅可以进一步了解CME后不良预后机制,并有助于为其药物治疗寻找新的靶点。
Abstract:
Coronary microembolization(CME) occurs in patients with acute coronary syndrome and is primarily caused by atherosclerotic plaque rupture associated with surgery. CME can lead to arrhythmias,reduced coronary blood flow reserve,and cardiac systolic dysfunction. The clinical efficacies of conventional coronary artery dilation,antiplatelet agents,and direct thrombus aspiration after CME are not satisfactory. Studies have found that microRNA(miRNA) specifically bind to the 3?-UTR of inflammatory response,apoptosis,and autophagy-related messenger RNA,and ultimately affect the prognosis of CME. In-depth study of the role of miRNA in the occurrence and development of CME can not only further understand the mechanism of poor prognosis after CME,but also help to find new targets for its drug treatment

参考文献/References:

[1] Heusch G. Coronary blood flow in heart failure :cause,consequence and bystander[J]. Basic Res Cardiol,2022,117(1):1.

[2] Heusch G ,Skyschally A,Kleinbongard P.Coronary microembolization and microvascular dysfunction[J]. Int J Cardiol,2018,258:17-23.

[3] Vishnoi A ,Rani S. MiRNA biogenesis and regulation of diseases:an updated overview[J]. Methods Mol Biol,2023,2595:1-12.

[4] Travis G ,McGowan EM,Simpson AM,et al. PTEN,PTENP1,microRNAs,and ceRNA networks:precision targeting in cancer therapeutics[J]. Cancers (Basel),2023,15(20):4954.

[5] Li H ,Gao F,Wang X,et al. Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease[J]. Biosci Rep,2019,39(5):BSR20182016.

[6] Colpaert R MW,Calore M. MicroRNAs in cardiac diseases[J]. Cells,2019,8(7):737.

[7] Tanase DM ,Gosav EM,Ouatu A,et al. Current knowledge of microRNAs (miRNAs) in acute coronary syndrome(ACS):ST-elevation myocardial infarction (STEMI)[J]. Life (Basel),2021,11(10):1057.

[8] Su Q,Li L,Zhao J, et al. MiRNA expression profile of the myocardial tissue of pigs with coronary microembolization[J]. Cell Physiol Biochem,2017,43(3):1012-1024.

[9] Xue Y ,Zhou B,Wu J,et al. Transplantation of endothelial progenitor cells in the treatment of coronary artery microembolism in rats[J]. Cell Transplant,2020,29:963689720912688.

[10] Foinquinos A,Batkai S,Genschel C,et al. Preclinical development of a miR-132 inhibitor for heart failure treatment[J]. Nat Commun,2020,11(1):633.

[11] Cai R,Xu Y,Ren Y,et al. MicroRNA-136-5p protects cardiomyocytes from coronary microembolization through the inhibition of pyroptosis[J]. Apoptosis,2022,27(3-4):206-221.

[12] Chen ZQ,Zhou Y,Chen F,et al. MiR-200a-3p attenuates coronary microembolization-induced myocardial injury in rats by inhibiting TXNIP/NLRP3-mediated cardiomyocyte pyroptosis[J]. Front Cardiovasc Med,2021,8:693257.

[13] Xu Y,Lv X,Cai R,et al. Possible implication of miR-142-3p in coronary microembolization induced myocardial injury via ATXN1L/HDAC3/NOL3 axis[J]. J Mol Med (Berl),2022,100(5):763-780.

[14] Kong B,Qin Z,Ye Z,et al. MicroRNA-26a-5p affects myocardial injury induced by coronary microembolization by modulating HMGA1[J]. J Cell Biochem,2019,120(6):10756-10766.

[15] Gao J,Ren J,Ma X,et al. Ligustrazine prevents coronary microcirculation dysfunction in rats via suppression of miR-34a-5p and promotion of Sirt1[J]. Eur J Pharmacol,2022,929:175150.

[16] Zhou Y,Long MY,Chen ZQ,et al. Downregulation of miR-181a-5p alleviates oxidative stress and inflammation in coronary microembolization-induced myocardial damage by directly targeting XIAP[J]. J Geriatr Cardiol,2021,18(6):426-439.

[17] Zhou Y,Li T,Chen Z,et al. Overexpression of lncRNA TUG1 alleviates NLRP3 inflammasome-mediated cardiomyocyte pyroptosis through targeting the miR-186-5p/XIAP axis in coronary microembolization-induced myocardial damage[J]. Front Immunol,2021,12:637598.

[18] Dai R,Ren Y,Lv X,et al. MicroRNA-30e-3p reduces coronary microembolism-induced cardiomyocyte pyroptosis and inflammation by sequestering HDAC2 from the SMAD7 promoter[J]. Am J Physiol Cell Physiol,2023,324(2):C222-C235.

[19] Su Q,Lv X,Ye Z,et al. The mechanism of miR-142-3p in coronary microembolization-induced myocardiac injury via regulating target gene IRAK-1[J]. Cell Death Dis,2019,10(2):61.

[20] Su Q,Li L,Liu Y,et al. Ultrasound-targeted microbubble destruction-mediated microRNA-21 transfection regulated PDCD4/NF-κB/TNF-α pathway to prevent coronary microembolization-induced cardiac dysfunction[J]. Gene Ther,2015,22(12):1000-1006.

[21] Su B,Wang X,Sun Y,et al. MiR-30e-3p promotes cardiomyocyte autophagy and inhibits apoptosis via regulating Egr-1 during ischemia/hypoxia[J]. Biomed Res Int,2020,2020:7231243.

[22] Mo B,Wu X,Wang X,et al. MiR-30e-5p mitigates hypoxia-induced apoptosis in human stem cell-derived cardiomyocytes by suppressing Bim[J]. Int J Biol Sci,2019,15(5):1042-1051.

[23] Qin Z,Wang X,Zhou Y,et al. Upregulation of miR-29b-3p alleviates coronary microembolization-induced myocardial injury via regulating BMF and GSK-3β[J]. Apoptosis,2023,28(1-2):210-221.

[24] Zhu HH,Wang XT,Sun YH,et al. MicroRNA-486-5p targeting PTEN protects against coronary microembolization-induced cardiomyocyte apoptosis in rats by activating the PI3K/AKT pathway[J]. Eur J Pharmacol,2019,855:244-251.

[25] Cao W,Li J,Yang K,et al. An overview of autophagy:Mechanism,regulation and research progress[J]. Bull Cancer,2021,108(3):304-322.

[26] Allen EA,Baehrecke EH. Autophagy in animal development[J]. Cell Death Differ,2020,27(3):903-918.

[27] Yamamoto H,Matsui T. Molecular mechanisms of macroautophagy,microautophagy,and chaperone-mediated autophagy[J]. J Nippon Med Sch,2024,91(1):2-9.

[28] Gatica D,Chiong M,Lavandero S,et al. The role of autophagy in cardiovascular pathology[J]. Cardiovasc Res,2022,118(4):934-950.

[29] Fernández ?F,Sebti S,Wei Y,et al. Author correction:disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice[J]. Nature,2018,561(7723):E30.

[30] Wang XT,Wu XD,Lu YX,et al. Potential involvement of miR-30e-3p in myocardial injury induced by coronary microembolization via autophagy activation[J]. Cell Physiol Biochem,2017,44(5):1995-2004.

[31] Chen J,Huang ZP,Seok HY,et al. MiR-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts[J]. Circ Res,2013,112(12):1557-1566.

[32] Liang T,Gao F,Chen J. Role of PTEN-less in cardiac injury,hypertrophy and regeneration[J]. Cell Regen,2021,10(1):25.

[33] Wang J,Feng Q,Liang D,et al. MiRNA-26a inhibits myocardial infarction-induced apoptosis by targeting PTEN via JAK/STAT pathways[J]. Cells Dev,2021,165:203661.

[34] Li Y,Jiang J,Liu W,et al. MicroRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle[J]. Proc Natl Acad Sci U S A,2018,115(46):E10849-E10858.

[35] Feng Z,Bao S,Kong L,et al. MicroRNA-378 inhibits hepatocyte apoptosis during acute liver failure by targeting caspase-9 in mice[J]. Gastroenterol Hepatol,2023,46(2):124-134.

[36] Lin J,Lin H,Ma C,et al. MiR-149 aggravates pyroptosis in myocardial ischemia-reperfusion damage via silencing FOXO3[J]. Med Sci Monit,2019,25:8733-8743.

[37] Yang Y,Ji C,Guo S,et al. The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways[J]. Oncotarget,2017,8(42):72835-72846.

[38] Yang J,Chen D,He Y,et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene Atg9[J]. Age (Dordr),2013,35(1):11-22.

[39] Yang J,He Y,Zhai N,et al. MicroRNA-181a inhibits autophagy by targeting Atg5 in hepatocellular carcinoma[J]. Front Biosci (Landmark Ed),2018,23(2):388-396.

[40] Wang SS,Wu LJ,Li JJ,et al. A meta-analysis of dysregulated miRNAs in coronary heart disease[J]. Life Sci,2018,215:170-181.

更新日期/Last Update: 2024-09-13