参考文献/References:
[1] Knuuti J,Wijns W,Saraste A,et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J,2020,41(3):407-477.
[2] Yan RT,Miller JM,Rochitte CE,et al. Predictors of inaccurate coronary arterial stenosis assessment by CT angiography[J]. JACC Cardiovasc Imaging,2013,6(9):963-972.
[3] Kruk M,Noll D,Achenbach S,et al. Impact of coronary artery calcium characteristics on accuracy of CT angiography[J]. JACC Cardiovasc Imaging,2014,7(1):49-58.
[4] Dell’Aversana S,Ascione R,de Giorgi M,et al. Dual-energy CT of the heart:a review[J]. J Imaging,2022,8(9):236.
[5] Flohr T,Petersilka M,Henning A,et al. Photon-counting CT review[J]. Phys Med,2020,79:126-136.
[6] Min JK,Taylor CA,Achenbach S,et al. Noninvasive fractional flow reserve derived from coronary CT angiography:clinical data and scientific principles[J]. JACC Cardiovasc Imaging,2015,8(10):1209-1222.
[7] Nakamura S,Kitagawa K,Goto Y,et al. Incremental prognostic value of myocardial blood flow quantified with stress dynamic computed tomography perfusion imaging[J]. JACC Cardiovasc Imaging,2019,12(7 Pt 2):1379-1387.
[8] Rasoul H,Fyyaz S,Noakes D,et al. NHS England-funded CT fractional flow reserve in the era of the ISCHEMIA trial[J]. Clin Med (Lond),2021,21(2):90-95.
[9] de Cecco CN,Schoepf UJ,Steinbach L,et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT,Part 3:vascular,cardiac,pulmonary,and musculoskeletal applications[J]. J Comput Assist Tomogr,2017,41(1):1-7.
[10] Krauss B,Grant KL,Schmidt BT,et al. The importance of spectral separation:an assessment of dual-energy spectral separation for quantitative ability and dose efficiency[J]. Invest Radiol,2015,50(2):114-118.
[11] Zeng Y,Geng D,Zhang J. Noise-optimized virtual monoenergetic imaging technology of the third-generation dual-source computed tomography and its clinical applications[J]. Quant Imaging Med Surg,2021,11(11):4627-4643.
[12] De Santis D,Eid M,De Cecco CN,et al. Dual-energy computed tomography in cardiothoracic vascular imaging[J]. Radiol Clin North Am,2018,56(4):521-534.
[13] Secchi F,De Cecco CN,Spearman JV,et al. Monoenergetic extrapolation of cardiac dual energy CT for artifact reduction[J]. Acta Radiol. 2015 Apr;56(4):413-418.
[14] Song I,Yi JG,Park JH,et al. Virtual non-contrast CT using dual-energy spectral CT:feasibility of coronary artery calcium scoring[J]. Korean J Radiol,2016,17(3):321-329.
[15] Nakahara T,Toyama T,Jinzaki M,et al. Quantitative analysis of iodine image of dual-energy computed tomography at rest:comparison with 99mTc-tetrofosmin stress-rest single-photon emission computed tomography myocardial perfusion imaging as the reference standard[J]. J Thorac Imaging,2018,33(2):97-104.
[16] Carrascosa PM,Deviggiano A,Capunay C,et al. Incremental value of myocardial perfusion over coronary angiography by spectral computed tomography in patients with intermediate to high likelihood of coronary artery disease[J]. Eur J Radiol,2015,84(4):637-642.
[17] Kreisler B. Photon counting detectors:concept,technical challenges,and clinical outlook[J]. Eur J Radiol,2022,149:110229.
[18] Rajendran K,Voss BA,Zhou W,et al. Dose reduction for sinus and temporal bone imaging using photon-counting detector CT with an additional tin filter[J]. Invest Radiol,2020,55(2):91-100.
[19] Rajendran K,Petersilka M,Henning A,et al. First clinical photon-counting detector CT system:technical evaluation[J]. Radiology,2022,303(1):130-138.
[20] Koons E,VanMeter P,Rajendran K,et al. Improved quantification of coronary artery luminal stenosis in the presence of heavy calcifications using photon-counting detector CT[J]. Proc SPIE Int Soc Opt Eng,2022,12031:120311A.
[21] Mannil M,Ramachandran J,Vittoria de Martini I,et al. Modified dual-energy algorithm for calcified plaque removal:evaluation in carotid computed tomography angiography and comparison with digital subtraction angiography[J]. Invest Radiol,2017,52(11):680-685.
[22] Allmendinger T,Nowak T,Flohr T,et al. Photon-counting detector CT-based vascular calcium removal algorithm:assessment using a cardiac motion phantom[J]. Invest Radiol,2022,57(6):399-405.
[23] Eberhard M,Mergen V,Higashigaito K,et al. Coronary calcium scoring with first generation dual-source photon-counting CT-first evidence from phantom and in-vivo scans[J]. Diagnostics (Basel) , 2021,11(9):1708.
[24] Li P,Xu L,Yang L,Wang R,et al. Blooming artifact reduction in coronary artery calcification by a new de-blooming algorithm:initial study[J]. Sci Rep,2018,8(1):6945.
[25] Okutsu M,Mitomo S,Onishi H,et al. The estimation of coronary artery calcium thickness by computed tomography angiography based on optical coherence tomography measurements[J]. Heart Vessels,2023,38(11):1305-1317.
[26] Otgonbaatar C,Ryu JK,Kim S,et al. Improvement of depiction of the intracranial arteries on brain CT angiography using deep learning reconstruction[J]. J Integr Neurosci,2021,20(4):967-976.
[27] 赵润涛,纪欣强,刘子暖等. 动态CT心肌灌注对支架置入术后心肌缺血的诊断价值[J]. 解放军医学院学报,2022,43(11):1138-1145.
[28] 赵润涛,王凡,单冬凯等. CT心肌灌注概述及临床应用进展[J]. 心血管病学进展,2021,42(12):1101-1104.
[29] Yang J,Dou G,He B,et al. Stress myocardial blood flow ratio by dynamic CT perfusion identifies hemodynamically significant CAD[J]. JACC Cardiovasc Imaging,2020,13(4):966-976.
[30] El Mahdiui M,Smit JM,van Rosendael AR,et al. Relationship between coronary artery calcification and myocardial ischemia on computed tomography myocardial perfusion in patients with stable chest pain[J]. J Nucl Cardiol,2021,28(4):1707-1714.
[31] Sharma RK,Arbab-Zadeh A,Kishi S. Incremental diagnostic accuracy of computed tomography myocardial perfusion imaging over coronary angiography stratified by pre-test probability of coronary artery disease and severity of coronary artery calcification:The CORE320 study[J]. Int J Cardiol,2015,201:570-577.
[32] George RT,Arbab-Zadeh A,Cerci RJ,et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT:the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study[J]. AJR Am J Roentgenol,2011,197(4):829-837.
[33] Vavere AL,Simon GG,George RT,et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography:design and implementation of the CORE320 multicenter,multinational diagnostic study[J]. J Cardiovasc Comput Tomogr,2011,5(6):370-381.
[34] Tanabe Y,Kurata A,Matsuda T,et al. Computed tomographic evaluation of myocardial ischemia[J]. Jpn J Radiol,2020,38(5):411-433.
[35] Zhao N,Gao Y,Xu B,et al. Effect of coronary calcification severity on measurements and diagnostic performance of CT-FFR with computational fluid dynamics:results from CT-FFR CHINA trial[J]. Front Cardiovasc Med,2022,8:810625.
[36] di Jiang M,Zhang XL,Liu H,et al. The effect of coronary calcification on diagnostic performance of machine learning-based CT-FFR:a Chinese multicenter study[J]. Eur Radiol,2021,31(3):1482-1493.
[37] Mickley H,Veien KT,Gerke O,et al. Diagnostic and clinical value of FFRCT in stable chest pain patients with extensive coronary calcification:the FACC study[J]. JACC Cardiovasc Imaging,2022,15(6):1046-1058.
[38] Yang J,Shan D,Wang X,et al. On-site computed tomography-derived fractional flow reserve to guide management of patients with stable coronary artery disease:the TARGET randomized trial[J]. Circulation,2023,147(18):1369-1381.
[39] Tarkowski P,Czekajska-Chehab E. Dual-energy heart CT:beyond better angiography-review[J]. J Clin Med,2021,10(21):5193.
[40] Wardziak ?,Kruk M,Pleban W,et al. Coronary CTA enhanced with CTA based FFR analysis provides higher diagnostic value than invasive coronary angiography in patients with intermediate coronary stenosis[J]. J Cardiovasc Comput Tomogr,2019,13(1):62-67.
[41] Takagi H,Leipsic JA,McNamara N,et al. Trans-lesional fractional flow reserve gradient as derived from coronary CT improves patient management:ADVANCE registry[J]. J Cardiovasc Comput Tomogr,2022,16(1):19-26.
[42] Yan H,Gao Y,Zhao N,et al. Change in computed tomography-derived fractional flow reserve across the lesion improve the diagnostic performance of functional coronary stenosis[J]. Front Cardiovasc Med,2022,8:788703.
[43] Liu Z,Ding Y,Dou G,et al. Global trans-lesional computed tomography-derived fractional flow reserve gradient is associated with clinical outcomes in diabetic patients with non-obstructive coronary artery disease[J]. Cardiovasc Diabetol,2023,22(1):186.
相似文献/References:
[1]刘静 彭礼清.心外膜脂肪组织定量评价的影像学进展[J].心血管病学进展,2020,(9):922.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.009]
LIU Jing,PENG Liqing.Quantitative Evaluation of Epicardial Adipose Tissue Measured by Different Imaging Methods[J].Advances in Cardiovascular Diseases,2020,(3):922.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.009]
[2]赵航 汪立杰 金元哲.血流储备分数在冠心病特殊人群中的临床应用进展[J].心血管病学进展,2020,(12):1272.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.012]
ZHAO Hang,WANG L ijie,JIN Yuanzhe.Clinical Application Advances of Fractional Flow Reserve in Special Populations with Coronary Artery Disease[J].Advances in Cardiovascular Diseases,2020,(3):1272.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.012]
[3]方舟 羊镇宇.定量血流分数的临床应用及研究进展[J].心血管病学进展,2021,(3):262.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.017]
FANG ZhouYANG Zhenyu.Clinical Application and Research Progress of Quantitative Flow Ratio[J].Advances in Cardiovascular Diseases,2021,(3):262.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.017]
[4]胥日,羊镇宇.冠状动脉非阻塞性心肌梗死的发病机制[J].心血管病学进展,2021,(2):148.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.014]
XU Ri,YANG Zhenyu.Pathogenesis and Imaging Manifestations of Myocardial Infarction with Non-obstructive Coronary Arteries[J].Advances in Cardiovascular Diseases,2021,(3):148.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.014]
[5]金亮丽 王治.现代医学影像学在心肾综合征中的应用进展[J].心血管病学进展,2021,(7):645.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.017]
JIN Liangli,WANG Zhi.Application Progress of Modern Medical Imaging Technology in Cardiorenal Syndrome[J].Advances in Cardiovascular Diseases,2021,(3):645.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.017]
[6]方杰 李春梅 林薿 苏叶 陈丽君 李爽 邓燕 尹立雪 吴志霞.心肌增强多巴酚丁胺负荷超声心动图定量评价冠心病心肌灌注的临床研究[J].心血管病学进展,2021,(8):742.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.017]
FANG Jie,LI Chunmei,LIN Ni,et al.Quantitative Evaluation of Myocardial Perfusion in Coronary Heart Disease by Myocardial Contrast and Dobutamine Stress Echocardiography[J].Advances in Cardiovascular Diseases,2021,(3):742.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.017]
[7]蒋梦婷 张瑜 高磊.髓系细胞触发受体-1在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2023,(4):345.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.013]
JIANG Mengting,ZHANG Yu,GAO Lei.Triggering Receptor Expressed on Myeloid Cells-1 in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2023,(3):345.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.013]
[8]陈杰 常静 石秋月 陈月茗 李鑫 赵宏.钠-葡萄糖共转运蛋白2抑制剂治疗冠心病患者的疗效及作用机制[J].心血管病学进展,2023,(8):704.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.008]
CHEN Jie,CHANG Jing,SHI Qiuyue,et al.Therapeutic Effect and Mechanism of Sodium-Glucose Linked Transporter 2 Inhibitor in Patients with Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2023,(3):704.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.008]
[9]赵润涛 王凡 单冬凯 杨俊杰.CT心肌灌注概述及临床应用进展[J].心血管病学进展,2021,(12):1101.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.011]
ZHAO Runtao WANG Fan SHAN Dongkai?YANG Junjie.CT Myocardial Perfusion and Clinical Application[J].Advances in Cardiovascular Diseases,2021,(3):1101.[doi:10.16806/j.cnki.issn.1004-3934.2021.12.011]