[1]石丹丹 宁梓淇 刘美霞 刘剑刚.NADPH氧化酶4在心血管损伤中的作用机制[J].心血管病学进展,2024,(2):136.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.009]
 SHI Dandan,NING Ziqi,LIU Meixia,et al.Mechanism of the Role of Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase 4 in Cardiovascular Injury[J].Advances in Cardiovascular Diseases,2024,(2):136.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.009]
点击复制

NADPH氧化酶4在心血管损伤中的作用机制()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年2期
页码:
136
栏目:
综述
出版日期:
2024-02-25

文章信息/Info

Title:
Mechanism of the Role of Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase 4 in Cardiovascular Injury
作者:
石丹丹12 宁梓淇12 刘美霞1 刘剑刚1
(1.中国中医科学院西苑医院,北京 100091;2.中国中医科学院研究生院,北京 100700)
Author(s):
SHI Dandan12NING Ziqi12LIU Meixia1LIU Jiangang1
(1.Xiyuan Hospital,Chinese Academy of Chinese Medical Sciences,Institute of Geriatrics of Chinese Academy of Chinese Medical Sciences,Beijing 100091,China; 2. Graduate School of China Academy of Chinese Medicial Sciences,Beijing 100700,China)
关键词:
NADPH氧化酶4活性氧心血管损伤
Keywords:
Reduced nicotinamide adenine dinucleotide phosphate oxidase 4 Reactive oxygen species Cardiovascular injury
DOI:
10.16806/j.cnki.issn.1004-3934.2024.02.009
摘要:
心血管结构和功能损伤是许多心血管疾病的重要病理基础,许多研究表明氧化应激在缺血性心脏病、动脉粥样硬化、高血压等诸多病理性心血管损伤中发挥重要作用。NADPH氧化酶(Nox)是调控氧化还原信号的关键酶,而血管内的活性氧主要来源于Nox4。随着研究的不断深入,发现Nox4在不同阶段或不同刺激下会发挥不同甚至截然相反的作用,如双向调节动脉粥样硬化的进展、双向作用影响血压等。现总结Nox4在不同心血管损伤中的不同影响及作用机制,为后续的研究提供一定的理论基础。
Abstract:
The damage of cardiovascular structure and function is an important pathological basis of many cardiovascular diseases. Many studies have shown that oxidative stress plays an important role in many pathological cardiovascular injuries,such as ischemic heart disease,atherosclerosis,hypertension,etc. Reduced nicotinamide adenine dinucleotide phosphate oxidase (Nox) is a key enzyme in the regulation of redox signaling ,and intravascular reactive oxygen species are mainly originated from Nox4.With the deepening of the research,it has been found that Nox4 plays different or even opposite roles at different stages or under different stimuli,such as bidirectional regulation of atherosclerosis progression,bidirectional effects affecting blood pressure,etc. This article summarizes the different roles and mechanisms of Nox4 in different cardiovascular injuries,providing a theoretical basis for subsequent research

参考文献/References:

[1] Jung YS. Natural antioxidant in cardiovascular and cerebrovascular diseases[J]. Antioxidants (Basel),2022,11(6):1159-1161.
[2] Gola L ,Bierhansl L,Csatári J,et al. NOX4-derived ROS are neuroprotective by balancing intracellular calcium stores[J]. Cell Mol Life Sci,2023,80(5):127-145.
[3] Vermot A,Petit-H?rtlein I,Smith S,et al. NADPH oxidases(NOX):an overview from discovery,molecular mechanisms to physiology and pathology[J]. Antioxidants (Basel),2021,10(6):890-945.
[4] Tang X,Wang J,Abboud HE,et al. Sustained upregulation of endothelial Nox4 mediates retinal vascular pathology in type 1 diabetes[J]. Diabetes,2023,72(1):112-125.
[5] Lee H ,Jose P. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction[J]. Front Pharmacol,2021,12:670076-600094.
[6] Moghadam ZM ,Henneke P,Kolter J. From flies to men:ROS and the NADPH oxidase in phagocytes[J]. Front Cell Dev Biol,2021,9:628991-629007.
[7] Gimenez M ,Schickling BM,Lopes LR,et al. Nox1 in cardiovascular diseases:regulation and pathophysiology[J]. Clin Sci (Lond),2016,130(3):151-165.
[8] Bode K ,Hauri M,Jaquet V,et al. Unlocking the power of NOX2:a comprehensive review on its role in immune regulation[J]. Redox Biol,2023,64:102795-102812.
[9] García JG ,Ansorena E,Izal I,et al. Structure,regulation,and physiological functions of NADPH oxidase 5 (NOX5)[J]. J Physiol Biochem,2023,79(2):383-395.
[10] Ashtiwi NM,Sarr D,Rada B. DUOX1 in mammalian disease pathophysiology[J]. J Mol Med (Berl),2021,99(6):743-754.
[11] Islam R,Dash D,Singh R. An antioxidant ameliorates allergic airway inflammation by inhibiting HDAC 1 via HIF-1α/VEGF axis suppression in mice[J]. Sci Rep,2023,13(1):9637-9651.
[12] Ding H,Tang C,Wang W,et al. Polydatin ameliorates high fructose-induced podocyte oxidative stress via suppressing HIF-1α/NOX4 pathway[J]. Pharmaceutics,2022,14(10):2202-2230.
[13] Niapour A ,Miran M,Seyedasli N,et al. Anti-angiogenic effects of aqueous extract from Agrostemma githago L. seed in human umbilical vein endothelial cells via regulating Notch/VEGF,MMP2/9,ANG2,and VEGFR2[J]. Environ Sci Pollut Res Int,2023,30(9):22413-22429.
[14] Chai D ,Zhang L,Xi S,et al. Nrf2 activation induced by Sirt1 ameliorates acute lung injury after intestinal ischemia/reperfusion through NOX4-mediated gene regulation[J]. Cell Physiol Biochem,2018,46(2):781-792.
[15] Miyano K ,Okamoto S,Yamauchi A,et al. The NADPH oxidase NOX4 promotes the directed migration of endothelial cells by stabilizing vascular endothelial growth factor receptor 2 protein[J]. J Biol Chem,2020,295(33):11877-11890.
[16] Wang Y ,Wang W,Zhou S,et al. Poldip2 knockdown protects against lipopolysaccharide-induced acute lung injury via Nox4/Nrf2/NF-κB signaling pathway[J]. Front Pharmacol,2022,13:958916.
[17] Schr?der K,Zhang M,Benkhoff S,et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase[J]. Circulation research,2012,110(9):1217-1225.
[18] Shah MH,Chan EC,van Bergen NJ,et al. Nox4 facilitates TGFβ1-induced fibrotic response in human Tenon’s fibroblasts and promotes wound collagen accumulation in murine model of glaucoma filtration surgery[J]. Antioxidants (Basel),2020,9(11):1126-1140.
[19] Song IK,Kim HJ,Magesh V,et al. Ubiquitin C-terminal hydrolase-L1 plays a key role in angiogenesis by regulating hydrogen peroxide generated by NADPH oxidase 4[J]. Biochem Biophys Res Commun,2018,495(1):1567-1572.
[20] Barlin M,Clements J,Held J. Nox4 regulates cancer cell plasticity influencing autophagy state of cells[J]. Free Radic Biol Med,2022,192:97-98.
[21] Zhou T ,Li S,Yang L,et al. microRNA-363-3p reduces endothelial cell inflammatory responses in coronary heart disease via inactivation of the NOX4-dependent p38 MAPK axis[J]. Aging (Albany NY),2021,13(8):11061-11082.
[22] Langbein H,Brunssen C,Hofmann A,et al. NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice[J]. Eur Heart J,2016,37(22):1753-1761.
[23] Kim SA,Lee AS,Lee HB,et al. Soluble epoxide hydrolase inhibitor,TPPU,attenuates progression of atherosclerotic lesions and vascular smooth muscle cell phenotypic switching[J]. Vascul Pharmacol,2022,145:107086-107098.
[24] Canugovi C,Stevenson MD,Vendrov AE,et al. Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening[J]. Redox Biol,2019,26:101288.
[25] Cowley AW Jr,Yang C,Zheleznova NN,et al. Evidence of the importance of Nox4 in production of hypertension in Dahl salt-sensitive rats[J]. Hypertension,2016,67(2):440-450.
[26] Meister ML,Najjar RS,Danh JP,et al. Berry consumption mitigates the hypertensive effects of a high-fat,high-sucrose diet via attenuation of renal and aortic AT1R expression resulting in improved endothelium-derived NO bioavailability[J]. J Nutr Biochem,2023,112:109225.
[27] Zhang K,Kan H,Mao A,et al. Single-cell analysis of salt-induced hypertensive mouse aortae reveals cellular heterogeneity and state changes[J]. Exp Mol Med,2021,53(12):1866-1876.
[28] Hearse DJ,Humphrey SM,Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart:a study of myocardial enzyme release[J]. J Mol Cell Cardiol,1973,5(4):395-407.
[29] Yu Q,Lee CF,Wang W,et al. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury[J]. J Am Heart Assoc,2014,3(1):e000555.
[30] Matsushima S,Kuroda J,Ago T,et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator–activated receptor-α[J]. Circ Res,2013,112(8):1135-1149.
[31] Olejnik A,Banaszkiewicz M,Krzywonos-Zawadzka A,et al. The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury[J]. Cardiol J,2022,29(5):836-849.
[32] Lee HY,Kim HK,Hoang TH,et al. The correlation of IRE1α oxidation with Nox4 activation in aging-associated vascular dysfunction[J]. Redox Biol,2020,37:101727.
[33] Wang Y ,Zhong L,Liu X,et al. ZYZ-772 prevents cardiomyocyte injury by suppressing Nox4-derived ROS production and apoptosis[J]. Molecules,2017,22(2):331-343.
[34] Yan F,Wang Y,Wu X,et al. Nox4 and redox signaling mediate TGF-β-induced endothelial cell apoptosis and phenotypic switch[J]. Cell Death Dis,2014,5(1):e1010.
[35] Riaz TA ,Junjappa RP,Handigund M,et al. Role of endoplasmic reticulum stress sensor IRE1α in cellular physiology,calcium,ROS signaling,and metaflammation[J]. Cells,2020,9(5):1160.
[36] Song C,Shi D,Chang K,et al. Sodium fluoride activates the extrinsic apoptosis via regulating NOX4/ROS-mediated p53/DR5 signaling pathway in lung cells both in vitro and in vivo[J]. Free Radic Biol Med,2021,169:137-148.
[37] Zhong Y ,Wang L,Jin R,et al. Diosgenin inhibits ROS generation by modulating NOX4 and mitochondrial respiratory chain and suppresses apoptosis in diabetic nephropathy[J]. Nutrients,2023,15(9):2164.

相似文献/References:

[1]薛进华 叶超 毛露 Dirk Hermann 陈艾东.活性氧引起缺氧诱导因子1活化参与肺动脉高压血管重塑的分子机制[J].心血管病学进展,2020,(8):844.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.015]
 XUE Jinhua,YE Chao,MAO Lu,et al.Molecular Mechanism of Hypoxia Inducible Factor-1 Activation Induced by Reactive Oxygen Species in Vascular Remodeling of Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2020,(2):844.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.015]
[2]高先佈李昌金宋晓伟吴弘.线粒体转录因子A在心力衰竭的研究[J].心血管病学进展,2022,(10):919.[doi:10.16806/j.cnki.issn.1004-3934.2022..013]
 GAO Xianbu,LI Changjin,SONG Xiaowei,et al.Mitochondrial Transcription Factor A and Heart Failure[J].Advances in Cardiovascular Diseases,2022,(2):919.[doi:10.16806/j.cnki.issn.1004-3934.2022..013]
[3]袁敏?韩轩茂?蔺雪峰.纳米氧化铈抗氧化保护心肌细胞的研究进展[J].心血管病学进展,2023,(7):654.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.018]
 YUAN Min,HAN Xuanmao,LIN Xuefeng.Cerium Oxide Nanoparticles in Antioxidant Protection of M yocardial?ells?/html>[J].Advances in Cardiovascular Diseases,2023,(2):654.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.018]
[4]岳田 黄刚 杨佳丽 何健 旦增顿珠 高寒 秦珊珊 侯君 徐俊波.姜黄素纳米颗粒联合可注射水凝胶用于改善心肌梗死后微环境的体外效果评价研究[J].心血管病学进展,2024,(2):187.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.018]
 YUE Tian,HUANG Gang,YANG Jiali,et al.Evaluation Study of the in Vitro Effect of Curcumin Nanopartrticle Combined with Injectable Hydrogel for Improving the Microenvironment after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2024,(2):187.[doi:10.16806/j.cnki.issn.1004-3934.2024.02.018]

更新日期/Last Update: 2024-03-29