参考文献/References:
[1] Magdy TJouni M,Kuo HH,et al. Identification of drug transporter genomic variants and inhibitors that protect against doxorubicin-induced cardiotoxicity[J]. Circulation,2022,145(4):279-294.
[2] Dixon SJ,Lemberg KM,Lamprecht MR,et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5):1060-1072.
[3] Antoniak S,Phungphong S,Cheng Z,et al. Novel mechanisms of anthracycline-induced cardiovascular toxicity:a focus on thrombosis,cardiac atrophy,and programmed cell death[J]. Front Cardiovasc Med,2021,8:817977.
[4] Tadokoro T,Ikeda M,Ide T,et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J]. JCI Insight,2020,5(9):e132747.
[5] Masaldan S,Bush AI,Devos D,et al. Striking while the iron is hot:iron metabolism and ferroptosis in neurodegeneration[J]. Free Radic Biol Med,2019,133:221-233.
[6] Galaris D,Barbouti A,Pantopoulos K. Iron homeostasis and oxidative stress:an intimate relationship[J]. Biochim Biophys Acta Mol Cell Res,2019,1866(12):118535.
[7] Gaschler MM,Stockwell BR. Lipid peroxidation in cell death[J]. Biochem Biophys Res Commun,2017,482(3):419-425.
[8] Gao M,Yi J,Zhu J,et al. Role of mitochondria in ferroptosis[J]. Mol Cell,2019,73(2):354-363.e3.
[9] Liu MR,Zhu WT,Pei DS. System Xc-:a key regulatory target of ferroptosis in cancer[J]. Invest New Drugs,2021,39(4):1123-1131.
[10] Song X,Zhu S,Chen P,et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc- activity[J]. Curr Biol,2018,28(15):2388-2399.e5.
[11] Doll S,Freitas FP,Shah R,et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature,2019,575(7784):693-698.
[12] Thimmulappa RK,Mai KH,Srisuma S,et al. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray[J]. Cancer Res,2002,62(18):5196-5203.
[13] Panjrath GS,Patel V,Valdiviezo CI,et al. Potentiation of Doxorubicin cardiotoxicity by iron loading in a rodent model[J]. J Am Coll Cardiol,2007,49(25):2457-2464.
[14] Fang X,Wang H,Han D,et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A,2019,116(7):2672-2680.
[15] Zhuang S,Ma Y,Zeng Y,et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis[J]. Cell Biol Toxicol,2023,39(3):1015-1035.
[16] Asensio-López MC,Sánchez-Más J,Pascual-Figal DA,et al. Involvement of ferritin heavy chain in the preventive effect of metformin against doxorubicin-induced cardiotoxicity[J]. Free Radic Biol Med,2013,57:188-200.
[17] Maccarinelli F,Gammella E,Asperti M,et al. Mice lacking mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity[J]. J Mol Med (Berl),2014,92(8):859-869.
[18] Wang Y,Ying X,Wang Y,et al. Hydrogen sulfide alleviates mitochondrial damage and ferroptosis by regulating OPA3-NFS1 axis in doxorubicin-induced cardiotoxicity[J]. Cell Signal,2023,107:110655.
[19] Sim?nek T,Stérba M,Popelová O,et al. Anthracycline-induced cardiotoxicity:overview of studies examining the roles of oxidative stress and free cellular iron[J]. Pharmacol Rep,2009,61(1):154-171.
[20] Li X,Liang J,Qu L,et al. Exploring the role of ferroptosis in the doxorubicin-induced chronic cardiotoxicity using a murine model[J]. Chem Biol Interact,2022,363:110008.
[21] Hou K,Shen J,Yan J,et al. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin[J]. EBioMedicine,2021,69:103456.
[22] Li D,Liu X,Pi W,et al. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation[J]. Front Pharmacol,2021,12:808480.
[23] Guo F,Wang Y,Wang J,et al. Choline protects the heart from doxorubicin-induced cardiotoxicity through vagal activation and Nrf2/HO-1 pathway[J]. Oxid Med Cell Longev,2022,2022:4740931.
[24] Li Y,Lin R,Peng X,et al. The role of mitochondrial quality control in anthracycline-induced cardiotoxicity:from bench to bedside[J]. Oxid Med Cell Longev,2022,2022:3659278.
[25] Abe K,Ikeda M,Ide T,et al. Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis[J]. Sci Signal,2022,15(758):eabn8017.
[26] Ichikawa Y,Ghanefar M,Bayeva M,et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation[J]. J Clin Invest,2014,124(2):617-630.
[27] Zamorano JL,Lancellotti P,Rodriguez Mu?oz D,et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)[J]. Eur Heart J,2016,37(36):2768-2801.
[28] Zhang H,Wang Z,Liu Z,et al. Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1[J]. Front Cardiovasc Med,2021,8:685434.
[29] Jirkovsk? E,Len?ová-Popelová O,Hroch M,et al. Early and delayed cardioprotective intervention with dexrazoxane each show different potential for prevention of chronic anthracycline cardiotoxicity in rabbits[J]. Toxicology,2013,311(3):191-204.
[30] Fedotcheva TA,Fedotcheva NI. Protectors of the mitochondrial permeability transition pore activated by iron and doxorubicin[J]. Curr Cancer Drug Targets,2021,21(6):514-525.
[31] Liu Y,Zeng L,Yang Y,et al. Acyl-CoA thioesterase 1 prevents cardiomyocytes from Doxorubicin-induced ferroptosis via shaping the lipid composition[J]. Cell Death Dis,2020,11(9):756.
[32] Wang Y,Yan S,Liu X,et al. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway[J]. Cell Death Differ,2022,29(10):1982-1995.
[33] Yu W,Chen C,Xu C,et al. Activation of p62-NRF2 Axis protects against Doxorubicin-induced ferroptosis in cardiomyocytes:a novel role and molecular mechanism of resveratrol[J]. Am J Chin Med,2022,50(8):2103-2123.
[34] Luo LF,Guan P,Qin LY,et al. Astragaloside IV inhibits adriamycin-induced cardiac ferroptosis by enhancing Nrf2 signaling[J]. Mol Cell Biochem,2021,476(7):2603-2611.
[35] Russo M,Della Sala A,Tocchetti CG,et al. Metabolic aspects of anthracycline cardiotoxicity[J]. Curr Treat Options Oncol,2021,22(2):18.
[36] Sheta A,Elsakkar M,Hamza M,et al. Effect of metformin and sitagliptin on doxorubicin-induced cardiotoxicity in adult male albino rats[J]. Hum Exp Toxicol,2016,35(11):1227-1239.
[37] Quagliariello V,De Laurentiis M,Rea D,et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain,reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin[J]. Cardiovasc Diabetol,2021,20(1):150.
[38] Asensio-Lopez MC,Sanchez-Mas J,Pascual-Figal DA,et al. Ferritin heavy chain as main mediator of preventive effect of metformin against mitochondrial damage induced by doxorubicin in cardiomyocytes[J]. Free Radic Biol Med,2014,67:19-29.
相似文献/References:
[1]祁小青 周蕾.肿瘤治疗所致Ⅰ型心脏损伤的防治[J].心血管病学进展,2020,(7):741.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.017]
QI Xiaoqing,ZHOU Lei.Prevention and Treatment of TypeCardiac Injury Caused by Cancer Treatment[J].Advances in Cardiovascular Diseases,2020,(3):741.[doi:10.16806/j.cnki.issn.1004-3934.2020.07.017]
[2]郭辅定 殷铭 赖燕秋 江洪.蒽环类药物相关心血管疾病与自主神经调控展望[J].心血管病学进展,2021,(3):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
GUO Fuding,YIN Ming,LAI Yanqiu,et al.Anthracycline-induced Cardiovascular Diseases and Autonomic Nervous Regulation[J].Advances in Cardiovascular Diseases,2021,(3):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
[3]袁明明 赖松青 张泽宇 吴起才.铁死亡在脓毒症心脏功能损伤中的研究进展[J].心血管病学进展,2022,(1):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
YUAN mingmingLAI SongqingZHANG ZeyuWU Qicai.Ferroptosis in Cardiac Function Impairment in Sepsis[J].Advances in Cardiovascular Diseases,2022,(3):26.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.007]
[4]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(3):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[5]彭可玲 贾晓艳 王华 刘永铭.铁死亡与心力衰竭的研究进展[J].心血管病学进展,2022,(5):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
PENG Keling,JIA Xiaoyan,WANG Hua,et al.Ferroptosis and Heart Failure[J].Advances in Cardiovascular Diseases,2022,(3):432.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.012]
[6]邵亚兰 马继鹏 卢林鹤 熊祥 马燕燕 刘金成 杨剑.铁死亡与铁自噬在中的研究进展[J].心血管病学进展,2022,(9):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
SHAO Yalan,MA Jipeng,LU Linhe,et al.Ferroptosis and Ferritinophagy in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(3):787.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.005]
[7]孙悦 付松波 李亦兰.心肌细胞铁死亡及其检测方法[J].心血管病学进展,2023,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
SUN Yue,FU Songbo,LI Yilan.Methods for the Detection of Ferroptosis in Cardiomyocytes[J].Advances in Cardiovascular Diseases,2023,(3):167.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.016]
[8]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(3):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[9]王文杰 杨嘉馨 丁耀东 王可馨 牛佳龙 葛海龙.铁死亡在心血管疾病中的研究进展[J].心血管病学进展,2023,(5):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
WANG Wenjie,YANG Jiaxin,DING Yaodong,et al.Ferroptosis in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(3):420.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.009]
[10]于永丽 李艳 高奋.铁死亡在血管紧张素Ⅱ诱导的心肌肥大中的作用研究进展[J].心血管病学进展,2023,(12):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]
YU Yongli,LI Yan,GAO Fen.Ferroptosis in Angiotensin-Induced Cardiac hypertrophy[J].Advances in Cardiovascular Diseases,2023,(3):1116.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.014]