参考文献/References:
[1] 黎洁雯,龙洁旎,李明星,等. 脂蛋白(a)水平对冠心病患者药物洗脱支架植入术后支架内再狭窄及非靶病变的影响[J]. 解放军医学杂志,2019,44(10):851-856.
[2] Knuuti J,Wijns W,Saraste A,et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes[J]. Eur Heart J,2020,41(3):407-477.
[3] Burzotta F,Leone AM,Aurigemma C,et al. Fractional flow reserve or optical coherence tomography to guide management of angiographically intermediate coronary stenosis:a single-center trial[J]. JACC Cardiovasc Interv,2020,13(1):49-58.
[4] Iannaccone M,Abdirashid M,Annone U,et al. Comparison between functional and intravascular imaging approaches guiding percutaneous coronary intervention:a network meta-analysis of randomized and propensity matching studies[J]. Catheter Cardiovasc Interv,2020,95(7):1259-1266.
[5] Jeremias A,Davies JE,Maehara A,et al. Blinded physiological assessment of residual ischemia after successful angiographic percutaneous coronary?intervention:the DEFINE PCI study[J]. JACC Cardiovasc Interv,2019,12(20):1991-2001.
[6] Vasiljevs D,Kakurina N,Pontaga N,et al. Culprit versus complete revascularization during the initial intervention in patients with acute coronary syndrome using a virtual treatment planning tool:results of a single-center pilot study[J]. Medicina(Kaunas),2023,59(2):270.
[7] de Maria GL,Garcia-Garcia HM,Scarsini R,et al. Novel indices of coronary physiology:do we need alternatives to fractional flow reserve?[J]. Circ Cardiovasc Interv,2020,13(4):e008487.
[8] Shah R. Accuracy of fractional flow reserve during acute myocardial infarction[J]. Eur Heart J,2020,41(27):2597.
[9] Montone RA,Meucci MC,Niccoli G. The management of non-culprit coronary lesions in patients with acute coronary syndrome[J]. Eur Heart J Suppl,2020,22(suppl L):L170-L175.
[10] 曹成富,马玉良,李琪,等. 冠状动脉有创功能学检查研究进展[J]. 中国介入心脏病学杂志,2021,29(3):159-163.
[11] Lee JM,Park J,Hwang D,et al. Similarity and difference of resting distal?to aortic coronary pressure and?instantaneous wave-free ratio[J]. J Am Coll Cardiol,2017,70(17):2114-2123.
[12] Mamas MA,Horner S,Welch E,et al. Resting Pd/Pa measured with intracoronary pressure wire strongly predicts fractional flow reserve[J]. J Invasive Cardiol,2010,22(6):260-265.
[13] Piróth Z,Fül?p G,Boxma-de Klerk BM,et al. Correlation and relative prognostic value of fractional flow reserve and Pd/Pa of nonculprit lesions in ST-segment-elevation myocardial infarction[J]. Circ Cardiovasc Interv,2022,15(2):e010796.
[14] Tebaldi M,Biscaglia S,Erriquez A,et al. Comparison of quantitative flow ratio,Pd/Pa and diastolic hyperemia-free ratio versus fractional flow reserve in non-culprit lesion of patients with non ST-segment elevation myocardial infarction[J]. Catheter Cardiovasc Interv,2021,98(6):1057-1065.
[15] Westra J,Andersen BK,Campo G,et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve:the FAVOR Ⅱ Europe-Japan study[J]. J Am Heart Assoc,2018,7(14):e009603.
[16] St?hli BE,Erbay A,Steiner J,et al. Comparison of resting distal to aortic coronary pressure with angiography-based quantitative flow ratio[J]. Int J Cardiol,2019,279:12-17.
[17] Erbay A,Penzel L,Abdelwahed YS,et al. Feasibility and diagnostic reliability of quantitative flow ratio in the assessment of non-culprit lesions in acute coronary syndrome[J]. Int J Cardiovasc Imaging,2021,37(6):1815-1823.
[18] Milzi A,Dettori R,Marx N,et al. Quantitative flow ratio(QFR) identifies functional relevance of non-culprit lesions in coronary angiographies of patients with acute myocardial infarction[J]. Clin Res Cardiol,2021,110(10):1659-1667.
[19] Hong H,Li C,Gutiérrez-Chico JL,et al. Radial wall strain:a novel angiographic measure of plaque composition and vulnerability[J]. EuroIntervention,2022,18(12):1001-1010.
[20] Guo X,Maehara A,Yang M,et al. Predicting coronary stenosis progression using plaque fatigue from IVUS-based thin-slice models:a machine learning random forest approach[J]. Front Physiol,2022,13:912447.
[21] Araki M,Yonetsu T,Kurihara O,et al. Predictors of rapid plaque progression:an optical coherence tomography study[J]. JACC Cardiovasc Imaging,2021,14(8):1628-1638.
[22] Waksman R,di Mario C,Torguson R,et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging:a prospective,cohort study[J]. Lancet,2019,394(10209):1629-1637.
[23] Erlinge D,Maehara A,Ben-Yehuda O,et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound(PROSPECT Ⅱ):a prospective natural history study[J]. Lancet,2021,397(10278):985-995.
[24] Hong H,Jia H,Zeng M,et al. Risk stratification in acute coronary syndrome by comprehensive morphofunctional assessment with optical coherence tomography[J]. JACC Asia,2022,2(4):460-472.
[25] Usui E,Matsumura M,Mintz GS,et al. Clinical outcomes of low-intensity area without attenuation and cholesterol crystals in non-culprit lesions assessed by optical coherence tomography[J]. Atherosclerosis,2021,332:41-47.
[26] Puymirat E,Cayla G,Simon T,et al. Multivessel PCI guided by FFR or angiography for myocardial infarction[J]. N Engl J Med,2021,385(4):297-308.
[27] Tomaniak M,Masdjedi K,Neleman T,et al. Three-dimensional QCA-based vessel fractional flow reserve(vFFR) in Heart Team decision-making:a multicentre,retrospective,cohort study[J]. BMJ Open,2022,12(4):e054202.
[28] Groenland FTW,Huang J,Scoccia A,et al. Vessel fractional flow reserve-based non-culprit lesion reclassification in patients with ST-segment elevation myocardial infarction:impact on treatment strategy and clinical outcome(FAST STEMIⅠstudy)[J]. Int J Cardiol,2023,373:33-38.
[29] Baumann AAW,Mishra A,Worthley MI,et al. Management of multivessel coronary artery disease in patients with non-ST-elevation myocardial infarction:a complex path to precision medicine[J]. Ther Adv Chronic Dis,2020,11:2040622320938527.
[30] Atti V,Gwon Y,Narayanan MA,et al. Multivessel versus culprit-only revascularization in STEMI and multivessel coronary artery disease:meta-analysis of randomized trials[J]. JACC Cardiovasc Interv,2020,13(13):1571-1582.
[31] Collet JP,Thiele H,Barbato E,et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation[J]. Eur Heart J,2021,42(14):1289-1367.
[32] Kim MC,Hyun JY,Ahn Y,et al. Optimal revascularization strategy in non-ST-segment-elevation myocardial infarction with multivessel coronary artery disease:culprit-only versus one-stage versus multistage revascularization[J]. J Am Heart Assoc,2020,9(15):e016575.
[33] Rai D,Tahir MW,Bandyopadhyay D,et al. Meta-analysis and trial sequential analysis of randomized controlled trials for multivessel PCI versus culprit artery only PCI in STEMI without cardiogenic shock[J]. Curr Probl Cardiol,2021,46(3):100646.
[34] Bryer E,Stein E,Goldberg S.. Multivessel coronary artery disease:the limitations of a "one-size-fits-all" approach[J]. Mayo Clin Proc Innov Qual Outcomes,2020,4(6):638-641.
[35] Mehta SR,Bossard M. Acute coronary syndromes and multivessel disease:completing the evidence[J]. JACC Cardiovasc Interv,2020,13(13):1568-1570.
[36] Michail M,Thakur U,Mehta O,et al. Non-hyperaemic pressure ratios to guide percutaneous coronary intervention[J]. Open Heart,2020,7(2):e001308.
[37] Neumann FJ,Sousa-Uva M,Ahlsson A,et al. 2018 ESC/EACTS Guidelines on myocardial revascularization[J]. Eur Heart J,2019,40(2):87-165.
[38] Kennedy MW,Fabris E,Ijsselmuiden AJ,et al. Combined optical coherence tomography morphologic and fractional flow reserve hemodynamic assessment of non-culprit lesions to better predict adverse event outcomes in diabetes mellitus patients:COMBINE(OCT-FFR) prospective study. Rationale and design[J]. Cardiovasc Diabetol,2016,15(1):144.