参考文献/References:
[1] Schirone L,Forte M,D’Ambrosio L,et al. An overview of the molecular mechanisms associated with myocardial ischemic injury:state of the art and translational perspectives[J]. Cells,2022,11(7):1165.
[2] Lawton JS,Tamis-Holland JE,Bangalore S,et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization:executive summary:a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation,2022,145(3):e4-e17.
[3] Talman V,Kivel? R. Cardiomyocyte- endothelial cell interactions in cardiac remodeling and regeneration[J]. Front Cardiovasc Med,2018,5:101.
[4] Rath S,Sharma R,Gupta R,et al. MitoCarta3.0:an updated mitochondrial proteome now with sub-organelle localization and pathway annotations[J]. Nucleic Acids Res,2021,49(D1):D1541-D547.
[5] Chapman J,Ng YS,Nicholls TJ. The maintenance of mitochondrial DNA integrity and dynamics by mitochondrial membranes[J]. Life(Basel),2020,10(9):164.
[6] Caja S,Enríquez JA. Mitochondria in endothelial cells: sensors and integrators of environmental cues[J]. Redox Biol,2017,12:821-827.
[7] Wang HH,Wu YJ,Tseng YM,et al. Mitochondrial fission protein 1 up-regulation ameliorates senescence-related endothelial dysfunction of human endothelial progenitor cells[J]. Angiogenesis,2019,22(4):569-582.
[8] Giacomello M,Pyakurel A,Glytsou C,et al. The cell biology of mitochondrial membrane dynamics[J]. Nat Rev Mol Cell Biol,2020,21(4):204-224.
[9] Seo BJ,Yoon SH,Do JT. Mitochondrial dynamics in stem cells and differentiation[J]. Int J Mol Sci,2018,19(12):3893.
[10] Chang X,Lochner A,Wang HH,et al. Coronary microvascular injury in myocardial infarction:perception and knowledge for mitochondrial quality control[J]. Theranostics,2021,11(14):6766-6785.
[11] Wang J,Toan S,Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury[J]. Angiogenesis,2020,23(3):299-314.
[12] Kadlec AO, Chabowski DS, Ait-Aissa K,et al. Role of PGC-1α in vascular regulation:implications for atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2016,36(8):1467-1474.
[13] Kahveci AS,Barnatan TT,Kahveci A,et al. Oxidative stress and mitochondrial abnormalities contribute to decreased endothelial nitric oxide synthase expression and renal disease progression in early experimental polycystic kidney disease[J]. Int J Mol Sci,2020,21(6):1994.
[14] Amruta N,Bix G.ATN-161 ameliorates ischemia/reperfusion-induced oxidative stress,fibro-inflammation,mitochondrial damage,and apoptosis-mediated tight junction disruption in bEnd.3 cells[J]. Inflammation,2021,44(6):2377-2394.
[15] Lai Y,Lin P,Chen M,et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function[J]. Redox Biol,2020,34:101503.
[16] Zhang J,Wang B,Wang H,et al. Disruption of the superoxide anions-mitophagy regulation axis mediates copper oxide nanoparticles-induced vascular endothelial cell death[J]. Free Radic Biol Med,2018,129:268-278.
[17] García-Quintans N,Sánchez-Ramos C,Prieto I,et al. Oxidative stress induces loss of pericyte coverage and vascular instability in PGC-1α-deficient mice[J]. Angiogenesis,2016,19(2):217-228.
[18] Adameova A,Horvath C,Abdul-Ghani S,et al. Interplay of oxidative stress and necrosis-like cell death in cardiac ischemia/reperfusion injury:a focus on necroptosis[J]. Biomedicines,2022,10(1):127.
[19] Rusciano MR,Sommariva E,Douin-Echinard V,et al. CaMKⅡ activity in the inflammatory response of cardiac diseases[J]. Int J Mol Sci,2019,20(18):4374.
[20] Wihastuti TA,Aini FN,Lutfiana NC,et al. Exploration of adhesion molecule expression in cardiac muscle of early atherosclerosis dyslipidemic Sprague Dawley Rats[J]. Open Med Chem J,2018,12:124-129.
[21] Boengler K,Bornbaum J,Schlüter KD,et al. P66shc and its role in ischemic cardiovascular diseases[J]. Basic Res Cardiol,2019,114(4):29.
[22] Zhao Y,Wang Z,Feng D,et al. p66Shc contributes to liver fibrosis through the regulation of mitochondrial reactive oxygen species[J]. Theranostics,2019,9(5):1510-1522.
[23] Puhm F,Afonyushkin T,Resch U,et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells[J]. Circ Res,2019,125(1):43-52.
[24] Li X,Fang P,Sun Y,et al. Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced,mitochondrial ROS-mediated innate immune activation,but spare innate immune memory signature in endothelial cells[J]. Redox Biol,2020,28:101373.
[25] Orekhov AN,Gerasimova EV,Sukhorukov VN,et al. Do mitochondrial DNA mutations play a key role in the chronification of sterile inflammation? Special focus on atherosclerosis[J]. Curr Pharm Des,2021,27(2):276-292.
[26] Mao Y,Luo W,Zhang L,et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity[J]. Arterioscler Thromb Vasc Biol,2017,37(5):920-929.
[27] Kibel A,Lukinac AM,Dambic V,et al. Oxidative stress in ischemic heart disease[J]. Oxid Med Cell Longev,2020,2020:6627144.
[28] Niccoli G,Montone RA,Ibanez B,et al. Optimized treatment of ST-elevation myocardial infarction[J]. Circ Res,2019,125(2):245-258.
[29] Eelen G, de Z eeuw P,T reps L,et al. Endothelial cell metabolism[J]. Physiol Rev,2018,98(1):3-58.
[30] Zhou H,Hu S,Jin Q,et al. Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening[J]. J Am Heart Assoc,2017,6(3):e005328.
[31] Wu D,Ji H,Du W,et al. Mitophagy alleviates ischemia/reperfusion-induced microvascular damage through improving mitochondrial quality control[J]. Bioengineered,2022,13(2):3596-3607.
[32] Zhou H,Toan S. Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury[J]. Biomolecules,2020,10(1):85.
[33] Zhou H,Wang J,Zhu P,et al. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α[J]. Basic Res Cardiol,2018,113(4):23.
[34] Jankauskas SS,Andrianova NV,Alieva IB,et al. Dysfunction of kidney endothelium after ischemia/reperfusion and its prevention by mitochondria-targeted antioxidant[J]. Biochemistry(Mosc),2016,81(12):1538-1548.
[35] Zhai R,Xu H,Hu F,et al. Exendin-4,a GLP-1 receptor agonist regulates retinal capillary tone and restores microvascular patency after ischaemia-reperfusion injury[J]. Br J Pharmacol,2020,177(15):3389-3402.
[36] Tyrrell DJ,Blin MG,Song J,et al. Age-associated mitochondrial dysfunction accelerates atherogenesis[J]. Circ Res,2020,126(3):298-314.
[37] Zou R,Shi W,Qiu J,et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis[J]. Cardiovasc Diabetol,2022,21(1):106.
[38] Fu B,Zeng Q,Zhang Z,et al. Epicatechin gallate protects HBMVECs from ischemia/reperfusion injury through ameliorating apoptosis and autophagy and promoting neovascularization[J]. Oxid Med Cell Longev,2019,2019:7824684.
[39] Bermudez-Gonzalez JL,Sanchez-Quintero D,Proa?o-Bernal L,et al. Role of the antioxidant activity of melatonin in myocardial ischemia-reperfusion injury[J]. Antioxidants(Basel),2022,11(4):627.
相似文献/References:
[1]王铁华,郑景辉,莫云秋.蛋白质组学在心肌梗死中的研究进展[J].心血管病学进展,2015,(5):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
WANG Tiehua,ZHENG Jinghui,MO Yunqiu.Research Progress of Proteomics in Myocardial Infarction[J].Advances in Cardiovascular Diseases,2015,(3):616.[doi:10.3969/j.issn.1004-3934.2015.05.024]
[2]孙洋.基质金属蛋白酶与心肌梗死后心脏重构[J].心血管病学进展,2019,(8):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
SUN Yang.Matrix Metalloproteinases in Cardiac Remodeling after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(3):1094.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.006]
[3]陈丰 苏强 朱继金.高迁移率族蛋白B1在心脏炎症反应性疾病中的研究进展[J].心血管病学进展,2019,(8):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
CHEN Feng,SU Qiang,ZHU Jijin.Research Progress of HMGB1 in Myocardial Inflammatory Reactivity Disease[J].Advances in Cardiovascular Diseases,2019,(3):1111.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.010]
[4]常文婧 王丽娜.Hippo通路在心脏发育、再生和疾病中的作用[J].心血管病学进展,2019,(8):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
CHANG Wenjin,WANG Lina.Role of Hippo Pathway in Heart Development,Regeneration and Disease[J].Advances in Cardiovascular Diseases,2019,(3):1115.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.011]
[5]王宇 周思维 张莎 吴弘.植入型心律转复除颤器在心肌梗死后心脏性猝死中的研究进展[J].心血管病学进展,2020,(1):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
WANG Yu,ZHOU Siwei,ZHANG Sha,et al.Implantable Cardioverter Defibrillator in Sudden Cardiac Death after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(3):4.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.002]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(3):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]王茜 李晶洁.细胞学机制在调控心肌梗死后炎症反应中的研究进展[J].心血管病学进展,2020,(2):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
WANG QianLI Jingjie.Cytological Mechanisms in Regulation of The Post-infarction Inflammatory Response[J].Advances in Cardiovascular Diseases,2020,(3):190.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.023]
[8]黄柳,张瑞宁,田小超,等.内皮祖细胞与冠心病患者CD14CD16+单核细胞共培养后移植心肌梗死大鼠对血管密度及心肌梗死面积的影响[J].心血管病学进展,2020,(2):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
HUANG Liu,ZHANG Ruining,TIAN Xiaochao,et al.Effects of Co-cultured Endothelial Progenitor Cells and CD14++CD16+ Monocytes from Coronary Heart Disease Patients on Vascular Density and Myocardial Infarction Size in Transplanting Myocardial Infarction Rats[J].Advances in Cardiovascular Diseases,2020,(3):203.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.027]
[9]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[10]谢建华,赵鸿泽,刘剑雄.MicroRNA在心肌梗死后左室重塑和心力衰竭发展中的研究现状[J].心血管病学进展,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]
XIE Jianhua,ZHAO Hongze,LIU Jianxiong.MicroRNA in Development of Left Ventricular Remodeling and Heart Failure after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(3):259.[doi:10.16806 /j.cnki.issn.1004-3934.2020.03.011]