[1]王学文?柯元甲?赵庆彦.自主神经调控免疫重构与房颤的发生[J].心血管病学进展,2023,(7):645.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.016]
 WANG Xuewen,KE Yuanjia,ZHAO Qingyan.Autonomic Nerve Regulates Immune Remodeling and The Occurrence of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(7):645.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.016]
点击复制

自主神经调控免疫重构与房颤的发生()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年7期
页码:
645
栏目:
综述
出版日期:
2023-07-25

文章信息/Info

Title:
Autonomic Nerve Regulates Immune Remodeling and The Occurrence of Atrial Fibrillation
作者:
王学文?柯元甲?赵庆彦
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060)
Author(s):
WANG XuewenKE YuanjiaZHAO Qingyan
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)
关键词:
心血管病学自主神经综述免疫重构房颤
Keywords:
Cardiology Autonomic nerveReviewImmune remodelingAtrial fibrillation
DOI:
10.16806/j.cnki.issn.1004-3934.2023.07.016
摘要:
研究早已显示自主神经对免疫系统具有调控作用。交感神经通过释放去甲肾上腺素激活β2肾上腺素受体,可调节免疫细胞的增殖、分化、成熟和效应功能,通过p38调节巨噬细胞极化及p53信号通路调节心肌炎性反应,从而增加房颤的易感性;迷走神经通过释放乙酰胆碱,特异性结合并激活组织巨噬细胞表面的α7烟碱乙酰胆碱受体,选择性地抑制致炎细胞因子释放,对房颤的易感性有明显抑制作用。现对自主神经调控免疫重构在房颤发生和维持中的最近研究进展做一综述。
Abstract:
Studies have long shown that the autonomic nerve has a regulatory effect on the immune system. Sympathetic nerves activate β2 adrenergic receptors by releasing norepinephrine, which can regulate the proliferation,differentiation,maturation and effector function of immune cells, regulate macrophage polarization through p38 and myocardial inflammatory response through p53 signaling pathway,thereby increasing the susceptibility to atrial fibrillation;the vagus nerve specifically binds and activates the α7 nicotinic acetylcholine receptor on the surface of tissue macrophages by releasing acetylcholine,selectively inhibiting the release of pro-inflammatory cytokines,and significantly inhibiting the susceptibility to atrial fibrillation. This article reviews the recent research progress of autonomic nerve regulation of immune remodeling in the occurrence and maintenance of atrial fibrillation.

参考文献/References:

[1] Litviňuková M,Talavera-López C,Maatz H,et al. Cells of the adult human heart[J]. Nature,2020,588(7838):466-472.

[2] Butts B,Goeddel LA,George DJ,et al. Increased inflammation in pericardial fluid persists 48 hours after cardiac surgery[J]. Circulation,2017,136(23):2284-2286.

[3] Horckmans M,Bianchini M,Santovito D,et al. Pericardial adipose tissue regulates granulopoiesis,fibrosis,and cardiac function after myocardial infarction[J]. Circulation,2018,137(9):948-960.

[4] Liu Y,Shi Q,Ma Y,et al. The role of immune cells in atrial fibrillation[J]. J Mol Cell Cardiol,2018,123:198-208.

[5] Smorodinova N,Bláha M,Melenovsk? V,et al. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm[J]. PLoS One,2017,12(2):e0172691.

[6] Stavrakis S,Stoner JA,Humphrey MB,et al. TRanscutaneous Electrical vAgus nerve sTimulation to suppress Atrial Fibrillation (TREAT AF):a randomized clinical trial[J]. JACC Clin Electrophysiol,2020,6(3):282-291.

[7] Hohmann C,Pfister R,Mollenhauer M,et al. Inflammatory cell infiltration in left atrial appendageal tissues of patients with atrial fibrillation and sinus rhythm[J]. Sci Rep,2020,10(1):1685.

[8] Watson CJ,Glezeva N,Horgan S,et al. Atrial tissue pro-fibrotic M2 macrophage marker CD163+,gene expression of procollagen and B-type natriuretic peptide[J]. J Am Heart Assoc,2020,9(11):e013416.

[9] Liao CH,Akazawa H,Tamagawa M,et al. Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts[J]. J Clin Invest,2010,120(1):242-253.

[10] Uemura K,Kondo H,Ishii Y,et al. Mast cells play an important role in the pathogenesis of hyperglycemia-induced atrial fibrillation[J]. J Cardiovasc Electrophysiol,2016,27(8):981-989.

[11] Maida CD,Vasto S,Di Raimondo D,et al. Inflammatory activation and endothelial dysfunction markers in patients with permanent atrial fibrillation:a cross-sectional study[J]. Aging (Albany NY),2020,12(9):8423-8433.

[12] Liu L,Zheng Q,Lee J,et al. PD-1/PD-L1 expression on CD(4+) T cells and myeloid DCs correlates with the immune pathogenesis of atrial fibrillation[J]. J Cell Mol Med,2015,19(6):1223-1233.

[13] Sulzgruber P,Koller L,Winter MP,et al. The impact of CD4+CD28null T-lymphocytes on atrial fibrillation and mortality in patients with chronic heart failure[J]. Thromb Haemost,2017,117(2):349-356.

[14] Wu N,Xu B,Liu Y,et al. Elevated plasma levels of Th17-related cytokines are associated with increased risk of atrial fibrillation[J]. Sci Rep,2016,6:26543.

[15] Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation[J]. JACC Clin Electrophysiol,2017,3(5):425-435.

[16] Hu B,Sun Y,Li S,et al. Association of β1-adrenergic,M2-muscarinic receptor autoantibody with occurrence and development of nonvalvular atrial fibrillation[J]. Pacing Clin Electrophysiol,2016,39(12):1379-1387.

[17] Lorton D,Bellinger DL. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells[J]. Int J Mol Sci,2015,16(3):5635-5665.

[18] Borovikova LV,Ivanova S,Zhang M,et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J]. Nature,2000,405(6785):458-462.

[19] Zila I,Mokra D,Kopincova J,et al. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway[J]. Physiol Res,2017,66(Suppl 2):S139-S145.

[20] Báez-Pagán CA,Delgado-Vélez M,Lasalde-Dominicci JA. Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation[J]. J Neuroimmune Pharmacol,2015,10(3):468-476.

[21] Yoshida Y,Shimizu I,Katsuumi G,et al. p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload[J]. J Mol Cell Cardiol,2015,85:183-198.

[22] Xin JZ,Wu JM,Hu GM,et al. α1-AR overactivation induces cardiac inflammation through NLRP3 inflammasome activation[J]. Acta Pharmacol Sin,2020,41(3):311-318.

[23] Wang X,Zhao Q,Huang H,et al. Effect of renal sympathetic denervation on atrial substrate remodeling in ambulatory canines with prolonged atrial pacing[J]. PLoS One,2013,8(5):e64611.

[24] Wang Y,Xiong X,Xie B,et al. A brain-stellate ganglion-atrium network regulates atrial fibrillation vulnerability through macrophages in acute stroke[J]. Life Sci,2019,237:116949.

[25] Yang M,Wang Y,Xiong X,et al. SK4 calcium-activated potassium channels activated by sympathetic nerves enhances atrial fibrillation vulnerability in a canine model of acute stroke[J]. Heliyon,2020,6(5):e03928.

[26] Kharbanda RK,van der Does WFB,van Staveren LN,et al. Vagus nerve stimulation and atrial fibrillation:revealing the paradox[J].?Neuromodulation,2022,25(3):356-365.

[27]张友京,赵庆彦,张淑娟等. 急性干预α7亚单位的N型乙酰胆碱受体介导的胆碱能抗炎通路对犬快速心房刺激诱发心房颤动的影响[J]. 中华心律失常学杂志,2017,21(5):414-420.

[28] Zhang SJ,Huang CX,Zhao QY,et al. The role of α7nAChR-mediated cholinergic anti-inflammatory pathway in vagal nerve regulated atrial fibrillation[J]. Int Heart J, 2021,62(3):607-615.

[29] He B,Lu Z,He W,et al. Low-intensity atrial ganglionated plexi stimulation decreases the serum level of inflammatory factors in canine[J]. Heart Lung Circ,2015,24(4):407-410.

[30] Zhao QY,Huang H,Zhang SD,et al. Atrial autonomic innervation remodelling and atrial fibrillation inducibility after epicardial ganglionic plexi ablation[J]. Europace,2010,12(6):805-810.

[31] Zhao Q,Zhang S,Huang H,et al. Inflammation abnormalities and inducibility of atrial fibrillation after epicardial ganglionated plexi ablation[J]. Arch Cardiovasc Dis,2011,104(4):227-233.

[32] Zhao Q,Zhang S,Zhao H,et al. Median nerve stimulation prevents atrial electrical remodelling and inflammation in a canine model with rapid atrial pacing[J]. Europace,2018,20(4):712-718.

[33] Yin J,Yang M,Yu S,et al. Effect of acupuncture at Neiguan point combined with amiodarone therapy on early recurrence after pulmonary vein electrical isolation in patients with persistent atrial fibrillation[J]. J Cardiovasc Electrophysiol,2019,30(6):910-917.

相似文献/References:

[1]许少华,张曼,综述,等.晚钠电流与舒张性心力衰竭[J].心血管病学进展,2016,(2):213.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.030]
 XU Shaohua,ZHANG Man,ZHANG Jin,et al.Late Sodium Current and Diastolic Heart Failure[J].Advances in Cardiovascular Diseases,2016,(7):213.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.030]
[2]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(7):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
[3]孙静美 尹德春 曲秀芬.炎症信号与心房颤动[J].心血管病学进展,2020,(1):31.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.009]
 SUN Jingmei,YIN Dechun,QU Xiufen.Inflammatory Signals Associated with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2020,(7):31.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.009]
[4]段首鹏 江洪 余锂镭.冠状动脉微循环功能障碍与自主神经研究进展[J].心血管病学进展,2022,(6):495.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.005]
 DUAN Shoupeng,JIANG Hong,YU Lilei.Coronary Microcirculation Dysfunction and Autonomic Nervous System[J].Advances in Cardiovascular Diseases,2022,(7):495.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.005]
[5]黄佳星 王猛 江洪.人工智能神经活性分析研究进展[J].心血管病学进展,2022,(6):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
 HUANG JiaxingWANG MengJIANG Hong.Artificial Intelligence and Neural Activity Analysis[J].Advances in Cardiovascular Diseases,2022,(7):538.[doi:10.16806/j.cnki.issn.1004-3934.20.06.015]
[6]周振 江洪.脂肪组织在心房颤动中的研究进展[J].心血管病学进展,2023,(3):224.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.008]
 ZHOU Zhen,JIANG Hong.Role of Adipose Tissue in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(7):224.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.008]
[7]韩亚凡 汤宝鹏 王菲菲 孙华鑫 李瑶 桑婉玥 王璐 杨杭 周贤惠 芦颜美 张玲 李耀东.低强度耳屏迷走神经刺激通过减轻心房内质网应激缓解长程起搏诱导的心房颤动[J].心血管病学进展,2023,(5):470.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.020]
 HAN Yafan,TANG Baopeng,WANG Feifei,et al.Transcutaneous Auricular Vagus Nerve Stimulation Relieves Long-Term Pacing-Induced Atrial Fibrillation by Reducing Atrial Endoplasmic Reticulum Stress[J].Advances in Cardiovascular Diseases,2023,(7):470.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.020]
[8]牟秦娇 张玥 王楠.无导线起搏器在特殊人群中植入的研究进展[J].心血管病学进展,2023,(8):694.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.006]
 MOU QinjiaoZHANG YueWANG Nan.Analysis of Implantation of Leadless Pacemakers in Special Populations[J].Advances in Cardiovascular Diseases,2023,(7):694.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.006]
[9]王清 梁小燕 芦颜美.神经免疫的交互作用在心力衰竭发生发展中机制的研究进展[J].心血管病学进展,2023,(11):1001.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.010]
 WANG Qing,LIANG Xiaoyan,LU Yanmei.Mechanism of Neuroimmune Crosstalk in Occurrence and Development of Heart Failure[J].Advances in Cardiovascular Diseases,2023,(7):1001.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.010]

更新日期/Last Update: 2023-08-18