[1]李红霞 朱凯 刘雯 王慧 杨涛毅.0~5岁川崎病儿童静脉注射免疫球蛋白耐药的相关因素分析及预测模型构建[J].心血管病学进展,2023,(3):283.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.020]
 LI HongxiaZHU KaiLIU WenWANG HuiYANG Taoyi?/html>.Analysis of Related Factors and Prediction Model?f Intravenous Immunoglobulin Resistance in Children with Kawasaki Disease Aged 0 5 Years[J].Advances in Cardiovascular Diseases,2023,(3):283.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.020]
点击复制

0~5岁川崎病儿童静脉注射免疫球蛋白耐药的相关因素分析及预测模型构建()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年3期
页码:
283
栏目:
论著
出版日期:
2023-03-25

文章信息/Info

Title:
Analysis of Related Factors and Prediction Model?f Intravenous Immunoglobulin Resistance in Children with Kawasaki Disease Aged 0 5 Years
作者:
李红霞 朱凯 2 刘雯 1 王慧 1 杨涛毅 1
(1.西南交通大学附属医院 成都市第三人民医院儿科,四川 成都 610031;2.新疆医科大学护理学院,新疆 乌鲁木齐 830011)
Author(s):
LI Hongxia1ZHU Kai2LIU Wen1WANG Hui1YANG Taoyi1?/html>
?1.Department of Pediatrics,The Third People’s Hospital of Chengdu,The Affiliated Hospital of Southwest Jiaotong University,Chengdu 610031,Sichuan,China; 2.School of Nursing,Xinjiang Medical University,Urumqi 830011,Xinjiang,China)
关键词:
川崎病静脉注射免疫球蛋白耐药危险因素预测模型
Keywords:
Kawasaki diseaseIntravenous immunoglobulin resistanceRisk factorPrediction model
DOI:
10.16806/j.cnki.issn.1004-3934.2023.03.020
摘要:
目的 通过卡方自动交互检测(CHAID)决策树模型与逻辑回归探讨川崎病(KD)静脉注射免疫球蛋白(IVIg)耐药发生的影响因素及其对IVIg耐药的预测效果。方法 采用回顾性队列研究方法,选取2015年1月—2022年1月于成都市第三人民医院确诊并经规范治疗且随访记录完整的310例KD患儿为研究对象,根据 IVIg耐药的发生情况分为耐药组与敏感组。分别构建逻辑回归模型与CHAID决策树模型分析IVIg耐药发生的主要影响因素,采用ROC曲线比较模型的效能。结果 310例KD患儿中,出现IVIg耐药63例(20.3%),与IVIg敏感组相比,IVIg耐药组的中性粒细胞绝对值、总胆红素(TBIL)、谷草转氨酶、谷丙转氨酶、C反应蛋白(CRP)、脑钠肽(BNP)和血清铁蛋白(SF)水平显著升高(P<0.05),10 d后开始使用IVIg,并发冠状动脉病变、心包积液、侧支血管形成的人数更多(P<0.05),血小板计数、血钠水平显著降低(P<0.05)。决策树模型ROC曲线下面积为0.918 6(95% CI 0.862 3~0.974 8), 逻辑回归模型为0.855 9(95% CI 0.775 9~0.935 9),两种模型区分度均良好,但CHAID决策树模型分类效能更优( Z=9.191,P<0.001)。结论 KD患儿发生 IVIg耐药的主要高危因素包括TBIL≥1.46 mg·dL﹣1、CRP≥94 mg·dL﹣1、BNP≥1 450 pg·mL﹣1和SF≥148 μg·L﹣1,其中TBIL和BNP是重要的影响因素。CHAID决策树模型可精确地识别早期IVIg耐药,为预防儿童获得性心脏病提供参考。
Abstract:
Objective The CHAID decision tree model and logistic regression were used to explore the factors influencing the occurrence of intravenous immunoglobulin(IVIg) resistance in Kawasaki disease(KD) and its predictive effect on IVIg resistance. Methods 310 KD patients who were diagnosed and rec eived treatment in The Third People’s Hospital of Chengdu between January 2015 and January 2022 and had complete follow-up records were chosen for the study using a retrospective cohort study method. The participants were split into drug-resistant group and sensitive group based on the presence of IVIg resistance. Logistic regression model and CHAID decision tree model were constructed to analyze the main factors affecting the occurrence of IVIg resistance,and the efficacy of the model was compared using the ROC curve. Results 63(20.3%) of the 310 KD patients acquired IVIg resistance. Compared with IVIg-sensitive group,the absolute neutrophil count,total bilirubin(TBIL),glutamic-oxaloacetic transaminase,glutamic-pyruvic transaminase,C-reactive protein(CRP),brain natriuretic peptide(BNP),and serum ferritin(SF) levels in IVIg-resistant group were significantly higher(P<0.05).The number of patients with coronary artery lesion,pericardial effusion,and collateral vessel formation was higher when IVIg was used 10 days later(P<0.05),and platelet count and blood sodium level were significantly lower(P<0.05). Both models performed well in terms of discrimination,but the CHAID decision tree model had superior classification efficacy(Z=9.191,P<0.001),with the area under the ROC curve for the decision tree model being 0.918 6(95% CI 0.862 3 to 0.974 8) and for the logistic regression model being 0.855 9(95% CI 0.775 9 to 0.935 9). Conclusion The main risk factors for IVIg resistance in KD children include TBIL≥1.46 mg·dL﹣1,CRP≥94 mg·dL﹣1,BNP≥1 450 pg·mL﹣1 and SF≥148 μg·L ﹣1,in which TBIL and BNP are important influencing factors. CHAID decision tree model can accurately identify early IVIg resistance and provide reference for prevention of acquired heart disease in children

参考文献/References:

[1] Butters C,Curtis N,Burgner DP. Kawasaki disease fact check:myths,misconceptions and mysteries[J]. J Paediatr Child Heal th,2020,56(9):1343-1345.

[2] Agarwal S,Agrawal DK. Kawasaki disease:etiopathogenesis and novel treatment strategies[J]. Expert Rev Clin Immunol,2017,13(3):247-258.

[3] Lo MS,Newburger JW. Role of intravenous immunoglobulin in the treatment of Kawasaki disease[J]. Int J Rheum Dis,2018,21(1):64-69.

[4] Ma F,Yu L,Ye L,et al. Length-of-stay prediction for pediatric patients with respiratory diseases using decision tree methods[J]. IEEE J Biomed Health Inform,2020,24(9):2651-2662.

[5] van Hoffen MFA,Norder G,Twisk JWR,et al. External validation of a prediction model and decision tree for sickness absence due to mental disorders[J]. Int Arch Occup Environ Health,2020,93(8):1007-1012.

[6] Maheswari S,Pitchai R. Heart disease prediction system using decision tree and naive Bayes algorithm[J]. Curr Med Imaging Rev,2019,15(8):712-717.

[7] 中华医学会儿科学分会心血管学组,中华医学会儿科学分会风湿学组,中华医学会儿科学分会免疫学组,等. 川崎病诊断和急性期治疗专家共识[J]. 中华儿科杂志,2022,60(1):6-13.

[8] Tirelli F,Marrani E,Giani T,et al. One year in review:Kawasaki disease[J]. Curr Opin Rheumatol,2020,32(1):15-20.

[9] Fabi M,Andreozzi L,Frabboni I,et al. Non-coronary cardiac events,younger age,and IVIG unresponsiveness increase the risk for coronary aneurysms in Italian children with Kawasaki disease[J]. Clin Rheumatol,2021,40(4):1507-1514.

[10] 王薪,泮思林,杜占慧,等. 川崎病治疗前发热时间与丙种球蛋白耐药的相关性临床研究[J]. 中国当代儿科杂志,2022,24(4):399-404.

[11] 余艳萍. 丙种球蛋白无反应型川崎病的危险因素研究[D]. 新疆医科大学,2016.

[12] Yang Y,Hu X. The predictive values of MMP-9,PLTs,ESR,and CRP levels in Kawasaki disease with cardiovascular injury[J]. Evid Based Complement Alternat Med,2022,2022:6913315.

[13] Qiu Z,Liu HH,Fan GZ,et al. The clinical implications of serum ferritin in Kawasaki disease:a helpful biomarker for evaluating therapeutic responsiveness,coronary artery involvement and the tendency of macrophage activation syndrome[J]. Arch Med Sci,2022,18(1):267-274.

[14] Dionne A,Dahdah N. Myocarditis and Kawasaki disease[J]. Int J Rheum Dis,2018,21(1):45-49.

[15] Cao L,Tang YJ,Gang M,et al. AST-to-ALT ratio and coronary artery lesions among patients with Kawasaki disease[J]. World J Pediatr,2021,17(6):659-668.

[16] Li X,Chen Y,Tang Y,et al. Predictors of intravenous immunoglobulin-resistant Kawasaki disease in children:a meta-analysis of 4442 cases[J]. Eur J Pediatr,2018,177(8):1279-1292.

[17] Iwashima S,Ishikawa T. B-type natriuretic peptide and N-terminal pro-BNP in the acute phase of Kawasaki disease[J]. World J Pediatr,2013,9(3):239-244.

[18] Zheng X,Wu W,Zhang Y,et al. Changes in and significance of platelet function and parameters in Kawasaki disease[J]. Sci Rep,2019,9(1):17641.

[19] Suzuki T,Michihata N,Aso S,et al. Sodium-containing versus sodium-trace preparations of IVIG for children with Kawasaki disease in the acute phase[J]. Eur J Pediatr,2021,180(11):3279-3286.

[20] Wang L,Zhang S,Ma J,et al. Kawasaki disease—Management strategies given symptoms overlap to COVID-19:a review[J]. JNMA J Nepal Med Assoc,2021,59(236):417-424.

[21] Faim D,Henriques C,Brett A,et al. Kawasaki disease:predictors of resistance to intravenous immunoglobulin and cardiac complications[J]. Arq Bras Cardiol,2021,116(3):485-491.

[22] Li C,Wu S,Shi Y,et al. Establishment and validation of a multivariate predictive scoring model for intravenous immunoglobulin-resistant Kawasaki disease:a study of children from two centers in China[J]. Front Cardiovasc Med,2022,9:883067.

相似文献/References:

[1]杨再英,王钰.川崎病后无创检查评估血管内皮功能的研究进展[J].心血管病学进展,2019,(6):939.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.025]
 YANG Zaiying,WANG Yu.Non-invasive Assessment of Vascular Endothelial Function after Kawasaki Disease[J].Advances in Cardiovascular Diseases,2019,(3):939.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.025]
[2]石树文 田雯.肠道微生物群与儿童川崎病[J].心血管病学进展,2020,(6):608.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.012]
 SHI ShuwenTIAN Wen. Intestinal microbiota and children Kawasaki disease[J].Advances in Cardiovascular Diseases,2020,(3):608.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.012]
[3]魏伟 魏灵睿 冷辉.血清miR-1和miR-26水平与川崎病患儿的关系及其对冠状动脉损伤的评估价值[J].心血管病学进展,2021,(5):476.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.021]
 WEI WeiWEI LingruiLENG Hui.Relationship Between Serum miR-1 and miR-26 Levels and Kawasaki Disease in Children and Its Value in Evaluating Coronary Artery Injury[J].Advances in Cardiovascular Diseases,2021,(3):476.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.021]
[4]王琼琼,赵胜.血小板活化在川崎病中的研究进展[J].心血管病学进展,2021,(6):552.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.000]
 WANG QiongqiongZHAO Sheng.Platelet Activation in the Pathogenesis of Kawasaki Disease[J].Advances in Cardiovascular Diseases,2021,(3):552.[doi:10.16806/j.cnki.issn.1004-3934.2021.08.000]
[5]王慧 张燕平 王志强 陈桂华 谢江.基于孟德尔随机化探索肠道菌群与儿童川崎病之间的因果关系[J].心血管病学进展,2023,(6):572.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.020]
 WANG HuiZHANG Yanping,WANG Zhiqiang,CHEN Guihua,et al.To Explore the Causal Relationship Between Gut Microbiota and Kawasaki Disease in Children Based on Mendelian Randomization[J].Advances in Cardiovascular Diseases,2023,(3):572.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.020]
[6]张威 段高羊 郭瑶 唐明生 吴沣芝 蒋丰智.川崎病急性期中性粒细胞胞外诱捕网与血管损伤的相关研究[J].心血管病学进展,2024,(11):1046.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.018]
 ZHANG Wei,DUAN Gaoyang,GUO Yao,et al.A Preliminary Study of the Involvement of Neutrophil Extracellular Traps on Vascular Injury in the Acute Phase of Kawasaki Disease[J].Advances in Cardiovascular Diseases,2024,(3):1046.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.018]

更新日期/Last Update: 2023-04-24