[1]林力 陈敏 梁明露 宁璐璐 王紫 黄恺.非编码RNA在代谢性心血管疾病中的研究及治疗现状[J].心血管病学进展,2022,(10):915.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.012]
 LIN Li,CHEN Min,LIANG Minglu,et al.Research and Treatment Status of Non-coding RNA in Metabolic Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(10):915.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.012]
点击复制

非编码RNA在代谢性心血管疾病中的研究及治疗现状()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
915
栏目:
综述
出版日期:
2022-10-25

文章信息/Info

Title:
Research and Treatment Status of Non-coding RNA in Metabolic Cardiovascular Disease
作者:
林力12 陈敏 2 梁明露 2 宁璐璐 12 王紫 34 黄恺 12
(1.华中科技大学同济医学院附属协和医院心血管内科,湖北 武汉 430022;2.华中科技大学同济医学院附属协和医院人类基因组临床研究中心,湖北 武汉 430022;3.华中科技大学同济医学院梨园心血管临床医学中心,湖北 武汉 430062;4.湖北省心血管疾病防治中心,湖北 武汉 430062)
Author(s):
LIN Li12CHEN Min2LIANG Minglu2NING Lulu12WANG Zi34HUANG Kai12
(1.Department of Cardiology,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,Hubei,China;2. Clinic Center of Human Gene Research,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,Hubei,China; 3. Cardiovascular Center,Liyuan Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430062,Hubei,China;4. Hubei Prevention and Therapeutic Center for Cardiovascular Diseases,Wuhan 430062,Hubei,China)
关键词:
非编码RNA代谢性心血管疾病治疗靶点
Keywords:
Non-coding RNA Metabolic cardiovascular disease Therapeutic targ
DOI:
10.16806/j.cnki.issn.1004-3934.2022.10.012
摘要:
代谢性心血管疾病是包含动脉粥样硬化、2型糖尿病、非酒精性脂肪肝等各类机体代谢性心血管疾病的总称。代谢性心血管疾病是中国居民健康的主要威胁,给社会医疗卫生系统带来了巨大的挑战。近年来,非编码RNA在代谢性心血管病的发生发展中越来越受到重视,但其在代谢性心血管病中的调控机制仍未阐明。现着重阐明非编码RNA在代谢性心血管疾病中的作用机制,为代谢性心血管病的诊断治疗提供新的策略与潜在治疗靶点。
Abstract:
Metabolic cardiovascular disease is a general term including atherosclerosis,type 2 diabetes,and non-alcoholic fatty liver disease. Metabolic cardiovascular disease is the main threat to the health of Chinese residents,which has brought great challenges to the social medical and health system. In recent years,non-coding RNA (ncRNA) has been attracted more and more attention in the occurrence and development of metabolic cardiovascular disease,but its regulatory mechanism in metabolic cardiovascular disease has not been clarified. This review will focus on clarifying the mechanism of ncRNA in metabolic cardiovascular disease,and provide new strategies and potential therapeutic targets for the diagnosis and treatment of metabolic cardiovascular disease

参考文献/References:

[1].Zhou M,Wang H,Zhu J,et al. Cause-specific mortality for 240 causes in China during 1990–2013 :a systematic subnational analysis for the Global Burden of Disease Study 2013[J]. Lancet,2016,387(10015):251-272.
[2].[2] Du X,Patel A,Anderson CS,et al. Epidemiology of cardiovascular disease in china and opportunities for?improvement:JACC?international[J]. J Am Coll Cardiol,2019,73(24):3135-3147.
[3].[3] Bei Y,Shi C,Zhang Z,et al. Advance for cardiovascular health in China[J]. J Cardiovasc Transl Res,2019,12(3):165-170.
[4].[4] Mattick JS. Non-coding RNAs:the architects of eukaryotic complexity[J]. EMBO Rep,2001,2(11):986-991.
[5].[5] Cheng HS,Besla R,Li A,et al. Paradoxical suppression of atherosclerosis in the absence of microRNA-146a[J]. Circ Res,2017,121(4):354-367.
[6].[6] Albinsson S,Sward K. Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease[J]. Pharmacol Res,2013,75:28-36.
[7].[7] Kumar S,Kim CW,Simmons RD,et al. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis :mechanosensitive athero-miRs[J]. Arterioscler Thromb Vasc Biol,2014,34(10):2206-2216.
[8].[8] Simion V,Zhou H,Haemmig S,et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus[J]. Nat Commun,2020,11(1):6135.
[9].[9] Pan JX. lncRNA H19 promotes atherosclerosis by regulating MAPK and NF- κB signaling pathway[J]. Eur Rev Med Pharmacol Sci,2017,21(2):322-328.
[10].[10] Bian W,Jing X,Yang Z,et al. Downregulation of lncRNA NORAD promotes ox-LDL-induced vascular endothelial cell injury and atherosclerosis[J]. Aging (Albany NY) ,2020,12(7):6385-6400.
[11].[11] Du M,Wang C,Yang L,et al. The role of long noncoding RNA Nron in atherosclerosis development and plaque stability[J]. iScience ,2022,25(3):103978.
[12].[12] Holdt LM,Stahringer A,Sass K,et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun ,2016,7:12429.
[13].[13] Song CL,Wang JP,Xue X,et al. Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis[J]. Cell Physiol Biochem ,2017,42(3):1202-1212.
[14].[14] Zhang S,Song G,Yuan J,et al. Circular RNA circ_0003204 inhibits proliferation ,migration and tube formation of endothelial cell in atherosclerosis via miR-370-3p/TGFβR2/phosph-SMAD3 axis[J]. J Biomed Sci,2020,27(1):11.
[15].[15] Chalasani N,?Younossi Z,?Lavine JE,et al.?The diagnosis and management of non-alcoholic fatty liver disease:practice Guideline by the American Association for the Study of Liver Diseases,American College of Gastroenterology,and the American Gastroenterological Association[J]. Hepatology,2012,55(6):2005-2023.
[16].[16] Ding J,?Li M,?Wan X,et al.?Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease[J]. Sci Rep,2015,5:13729.
[17].[17] Wu GY,?Rui C,?Chen JQ,?et al.?MicroRNA-122 inhibits lipid droplet formation and hepatic triglyceride accumulation via Yin Yang 1[J]. Cell Physiol Biochem,2017,44(4):1651-1664.
[18].[18] Esau C,Davis S,Murray SF,et al.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab,2006,3(2):87-98.
[19].[19] Zhao XY,Xiong X,Liu T,et al. Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis[J]. Nat Commun ,2018,9(1):2986.
[20].[20] Liu J,Tang T,Wang GD,et al. lncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease[J]. Biosci Rep,2019,9(7):BSR20181722.
[21].[21] Guo XY,?Sun F,?Chen JN,et al.circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling[J]. World J Gastroenterol,2018,24(3):323-337.
[22].[22] Guo XY,Chen JN,Sun F et al. circRNA_0046367 Prevents hepatoxicity of lipid peroxidation:an inhibitory role against hepatic steatosis[J]. Oxid Med Cell Longev,2017,2017:3960197.
[23].[23] Torella D,Iaconetti C,Catalucci D,et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo[J]. Circ Res,2011,109(8):880-893.
[24].[24] Kolodziejczyk SM,Wang L,Balazsi K,et al. MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium[J]. Curr Biol,1999,9(20):1203-1206.
[25].[25] van Rooij E,Sutherland LB,Liu N,et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci U S A. 2006 ,103(48):18255-18260.
[26].[26] Wang C,Liu G,Yang H,et al. MALAT1-mediated recruitment of the histone methyltransferase EZH2 to the microRNA-22 promoter leads to cardiomyocyte apoptosis in diabetic cardiomyopathy[J]. Sci Total Environ ,2021,766:142191.
[27].[27] Yu SY,Dong B,Fang ZF,et al. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy[J]. J Cell Mol Med ,2018,22(10):4886-4898.
[28].[28] Yang F,Qin Y,Wang Y,et al. lncRNA KCNQ1OT1 Mediates Pyroptosis in Diabetic Cardiomyopathy[J]. Cell Physiol Biochem ,2018,50(4):1230-1244.
[29].[29] Jiang Q,Liu C,Li CP,et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction[J]. J Clin Invest ,2020,130(7):3833-3847.
[30].[30] Liu C,Ge HM,Liu BH,et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction[J]. Proc Natl Acad Sci U S A ,2019,116(15):7455-7464.
[31].[31] Xiao Y,Zhao J,Tuazon JP,et al. MicroRNA-133a and myocardial infarction[J]. Cell Transplant[J]. 2019 ,28(7):831-838.
[32].[32] Zheng HF,Sun J,Zou ZY,et al. MiRNA-488-3p suppresses acute myocardial infarction-induced cardiomyocyte apoptosis via targeting ZNF791[J]. Eur Rev Med Pharmacol Sci ,2019,23(11):4932-4939.
[33].[33] He Z,Zeng X,Zhou D,et al. lncRNA chaer prevents cardiomyocyte apoptosis from acute myocardial infarction through AMPK activation[J]. Front Pharmacol ,2021,12:649398.
[34].[34] Deng X,Liu Y,Xu Z,et al. lncRNA NRON knockdown alleviates hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis by upregulating HIF-1α expression[J]. J Cardiovasc Pharmacol ,2022,79(4):479-488.
[35].[35] Zhu Y,Zhao P,Sun L,et al. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3β/β-catenin pathway in rats with myocardial infarction[J]. Cell Death Discov,2021,7(1):84.
[36].[36] Burnett JR,Hooper AJ. Running interference to lower cholesterol[J]. Lancet,2014,383(9911):10-12.
[37].[37] Bergeron N,Phan BA,Ding Y,et al. Proprotein convertase subtilisin/kexin type 9 inhibition :a new therapeutic mechanism for reducing cardiovascular disease risk[J]. Circulation,2015,132(17):1648-1666.
[38].[38] Fitzgerald K,White S,Borodovsky A,et al. A highly durable RNAi therapeutic inhibitor of PCSK9[J]. N Engl J Med,2017,376(1):41-51.
[39].[39] Bell DA,Hooper AJ,Burnett JR. Mipomersen,an antisense apolipoprotein B synthesis inhibitor[J]. Expert Opin Investig Drugs,2011,20(2):265-272.
[40].[40] Coelho T,Adams D,Silva A,et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis[J]. N Engl J Med 2013 ,369(9):819-829.
[41].[41] Cerchia L,Esposito CL,Camorani S,et al. Targeting Axl with an high-affinity inhibitory aptamer[J]. Mol Ther. 2012,20(12):2291-2303.

相似文献/References:

[1]陈炜,许贞蓉.表观遗传学与代谢性心血管疾病的研究进展[J].心血管病学进展,2019,(6):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
 CHEN Wei,XU Zhenrong.Epigenetics and Cardiometabolic Disease[J].Advances in Cardiovascular Diseases,2019,(10):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
[2]于颖  关秀茹.非编码RNA作为急性心肌梗死标志物的研究进展[J].心血管病学进展,2021,(2):153.[doi:10.16806/j. cnki. issn.1004-3934.2021.02.015]
  YU Ying,GUAN Xiuru.  The Research Progress of non-coding RNAs as Biomarkers for Acute Myocardial Infraction[J].Advances in Cardiovascular Diseases,2021,(10):153.[doi:10.16806/j. cnki. issn.1004-3934.2021.02.015]
[3]刘娟婧,杨志明.白脂素对代谢性心血管疾病潜在作用的研究进展[J].心血管病学进展,2023,(8):728.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.013]
 LIU Juanjing,YANG Zhiming.Effect of Asprosin on Metabolic Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(10):728.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.013]

更新日期/Last Update: 2022-12-26