参考文献/References:
[1].Zhou M,Wang H,Zhu J,et al. Cause-specific mortality for 240 causes in China during 1990–2013 :a systematic subnational analysis for the Global Burden of Disease Study 2013[J]. Lancet,2016,387(10015):251-272.
[2].[2] Du X,Patel A,Anderson CS,et al. Epidemiology of cardiovascular disease in china and opportunities for?improvement:JACC?international[J]. J Am Coll Cardiol,2019,73(24):3135-3147.
[3].[3] Bei Y,Shi C,Zhang Z,et al. Advance for cardiovascular health in China[J]. J Cardiovasc Transl Res,2019,12(3):165-170.
[4].[4] Mattick JS. Non-coding RNAs:the architects of eukaryotic complexity[J]. EMBO Rep,2001,2(11):986-991.
[5].[5] Cheng HS,Besla R,Li A,et al. Paradoxical suppression of atherosclerosis in the absence of microRNA-146a[J]. Circ Res,2017,121(4):354-367.
[6].[6] Albinsson S,Sward K. Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease[J]. Pharmacol Res,2013,75:28-36.
[7].[7] Kumar S,Kim CW,Simmons RD,et al. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis :mechanosensitive athero-miRs[J]. Arterioscler Thromb Vasc Biol,2014,34(10):2206-2216.
[8].[8] Simion V,Zhou H,Haemmig S,et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus[J]. Nat Commun,2020,11(1):6135.
[9].[9] Pan JX. lncRNA H19 promotes atherosclerosis by regulating MAPK and NF- κB signaling pathway[J]. Eur Rev Med Pharmacol Sci,2017,21(2):322-328.
[10].[10] Bian W,Jing X,Yang Z,et al. Downregulation of lncRNA NORAD promotes ox-LDL-induced vascular endothelial cell injury and atherosclerosis[J]. Aging (Albany NY) ,2020,12(7):6385-6400.
[11].[11] Du M,Wang C,Yang L,et al. The role of long noncoding RNA Nron in atherosclerosis development and plaque stability[J]. iScience ,2022,25(3):103978.
[12].[12] Holdt LM,Stahringer A,Sass K,et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun ,2016,7:12429.
[13].[13] Song CL,Wang JP,Xue X,et al. Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis[J]. Cell Physiol Biochem ,2017,42(3):1202-1212.
[14].[14] Zhang S,Song G,Yuan J,et al. Circular RNA circ_0003204 inhibits proliferation ,migration and tube formation of endothelial cell in atherosclerosis via miR-370-3p/TGFβR2/phosph-SMAD3 axis[J]. J Biomed Sci,2020,27(1):11.
[15].[15] Chalasani N,?Younossi Z,?Lavine JE,et al.?The diagnosis and management of non-alcoholic fatty liver disease:practice Guideline by the American Association for the Study of Liver Diseases,American College of Gastroenterology,and the American Gastroenterological Association[J]. Hepatology,2012,55(6):2005-2023.
[16].[16] Ding J,?Li M,?Wan X,et al.?Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease[J]. Sci Rep,2015,5:13729.
[17].[17] Wu GY,?Rui C,?Chen JQ,?et al.?MicroRNA-122 inhibits lipid droplet formation and hepatic triglyceride accumulation via Yin Yang 1[J]. Cell Physiol Biochem,2017,44(4):1651-1664.
[18].[18] Esau C,Davis S,Murray SF,et al.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab,2006,3(2):87-98.
[19].[19] Zhao XY,Xiong X,Liu T,et al. Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis[J]. Nat Commun ,2018,9(1):2986.
[20].[20] Liu J,Tang T,Wang GD,et al. lncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease[J]. Biosci Rep,2019,9(7):BSR20181722.
[21].[21] Guo XY,?Sun F,?Chen JN,et al.circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling[J]. World J Gastroenterol,2018,24(3):323-337.
[22].[22] Guo XY,Chen JN,Sun F et al. circRNA_0046367 Prevents hepatoxicity of lipid peroxidation:an inhibitory role against hepatic steatosis[J]. Oxid Med Cell Longev,2017,2017:3960197.
[23].[23] Torella D,Iaconetti C,Catalucci D,et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo[J]. Circ Res,2011,109(8):880-893.
[24].[24] Kolodziejczyk SM,Wang L,Balazsi K,et al. MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium[J]. Curr Biol,1999,9(20):1203-1206.
[25].[25] van Rooij E,Sutherland LB,Liu N,et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci U S A. 2006 ,103(48):18255-18260.
[26].[26] Wang C,Liu G,Yang H,et al. MALAT1-mediated recruitment of the histone methyltransferase EZH2 to the microRNA-22 promoter leads to cardiomyocyte apoptosis in diabetic cardiomyopathy[J]. Sci Total Environ ,2021,766:142191.
[27].[27] Yu SY,Dong B,Fang ZF,et al. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy[J]. J Cell Mol Med ,2018,22(10):4886-4898.
[28].[28] Yang F,Qin Y,Wang Y,et al. lncRNA KCNQ1OT1 Mediates Pyroptosis in Diabetic Cardiomyopathy[J]. Cell Physiol Biochem ,2018,50(4):1230-1244.
[29].[29] Jiang Q,Liu C,Li CP,et al. Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction[J]. J Clin Invest ,2020,130(7):3833-3847.
[30].[30] Liu C,Ge HM,Liu BH,et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction[J]. Proc Natl Acad Sci U S A ,2019,116(15):7455-7464.
[31].[31] Xiao Y,Zhao J,Tuazon JP,et al. MicroRNA-133a and myocardial infarction[J]. Cell Transplant[J]. 2019 ,28(7):831-838.
[32].[32] Zheng HF,Sun J,Zou ZY,et al. MiRNA-488-3p suppresses acute myocardial infarction-induced cardiomyocyte apoptosis via targeting ZNF791[J]. Eur Rev Med Pharmacol Sci ,2019,23(11):4932-4939.
[33].[33] He Z,Zeng X,Zhou D,et al. lncRNA chaer prevents cardiomyocyte apoptosis from acute myocardial infarction through AMPK activation[J]. Front Pharmacol ,2021,12:649398.
[34].[34] Deng X,Liu Y,Xu Z,et al. lncRNA NRON knockdown alleviates hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis by upregulating HIF-1α expression[J]. J Cardiovasc Pharmacol ,2022,79(4):479-488.
[35].[35] Zhu Y,Zhao P,Sun L,et al. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3β/β-catenin pathway in rats with myocardial infarction[J]. Cell Death Discov,2021,7(1):84.
[36].[36] Burnett JR,Hooper AJ. Running interference to lower cholesterol[J]. Lancet,2014,383(9911):10-12.
[37].[37] Bergeron N,Phan BA,Ding Y,et al. Proprotein convertase subtilisin/kexin type 9 inhibition :a new therapeutic mechanism for reducing cardiovascular disease risk[J]. Circulation,2015,132(17):1648-1666.
[38].[38] Fitzgerald K,White S,Borodovsky A,et al. A highly durable RNAi therapeutic inhibitor of PCSK9[J]. N Engl J Med,2017,376(1):41-51.
[39].[39] Bell DA,Hooper AJ,Burnett JR. Mipomersen,an antisense apolipoprotein B synthesis inhibitor[J]. Expert Opin Investig Drugs,2011,20(2):265-272.
[40].[40] Coelho T,Adams D,Silva A,et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis[J]. N Engl J Med 2013 ,369(9):819-829.
[41].[41] Cerchia L,Esposito CL,Camorani S,et al. Targeting Axl with an high-affinity inhibitory aptamer[J]. Mol Ther. 2012,20(12):2291-2303.