参考文献/References:
[1] Groenewegen A,Rutten FH,Mosterd A,et al. Epidemiology of heart failure[J]. Eur J Heart Fail,2020,22(8):1342-1356.
[2] Nair N. Epidemiology and pathogenesis of heart failure with preserved ejection fraction[J]. Rev Cardiovasc Med,2020,21(4):531-540.
[3] Omote K,Verbrugge FH,Borlaug BA. Heart failure with preserved ejection fraction:mechanisms and treatment strategies[J]. Annu Rev Med,2022,73:321-337.
[4] Triposkiadis F,Xanthopoulos A,Starling RC,et al. Obesity,inflammation,and heart failure:links and misconceptions[J]. Heart Fail Rev,2022,27(2):407-418.
[5] Packer M. Leptin-aldosterone-neprilysin axis:identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity[J]. Circulation,2018,137(15):1614-1631.
[6] Reddy YNV,Melenovsky V,Redfield MM,et al. High-output heart failure:a 15- year experience[J]. J Am Coll Cardiol,2016,68(5):473-482.
[7] Koutroumpakis E,Kaur R,Taegtmeyer H,et al. Obesity and heart failure with preserved ejection fraction[J]. Heart Fail Clin,2021,17(3):345-356.
[8] Dassanayaka S,Jones SP. Recent developments in heart failure[J]. Circ Res,2015,117(7):e58-e63.
[9] Reddy YNV,Lewis GD,Shah SJ,et al. Characterization of the obese phenotype of heart failure with preserved ejection fraction:a RELAX trial ancillary study[J]. Mayo Clin Proc,2019,94(7):1199-1209.
[10] Schiattarella GG,Rodolico D,Hill JA. Metabolic inflammation in heart failure with preserved ejection fraction[J]. Cardiovasc Res,2021,117(2):423-434.
[11] Wang X,Guo Z,Zhu Z,et al. Epicardial fat tissue in patients with psoriasis:a systematic review and meta-analysis[J]. Lipids Health Dis,2016,15:103.
[12] Correia ETO,Barbetta LMDS,Costa OSD,et al. Epicardial adipose tissue in heart failure phenotypes—A meta-analysis[J]. Arq Bras Cardiol,2022,118(3):625-633.
[13] Konwerski M,Gasecka A,Opolski G,et al. Role of epicardial adipose tissue in cardiovascular diseases:a review[J]. Biology(Basel),2022,11(3):355.
[14] Elsanhoury A,Nelki V,Kelle S,et al. Epicardial fat expansion in diabetic and obese patients with heart failure and preserved ejection fraction—A specific HFpEF phenotype[J]. Front Cardiovasc Med,2021,8:720690.
[15] Gruzdeva O,Uchasova E,Dyleva Y,et al. Adipocytes directly affect coronary artery disease pathogenesis via induction of adipokine and cytokine imbalances[J]. Front Immunol,2019,10:2163.
[16] Ren J,Wu NN,Wang S,et al. Obesity cardiomyopathy:evidence,mechanisms,and therapeutic implications[J]. Physiol Rev,2021,101(4):1745-1807.
[17] Obokata M,Reddy YNV,Pislaru SV,et al. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction[J]. Circulation,2017,136(1):6-19.
[18] Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium[J]. J Am Coll Cardiol,2018,71(20):2360-2372.
[19] Virdis A,Masi S,Colucci R,et al. Microvascular endothelial dysfunction in patients with obesity[J]. Curr Hypertens Rep,2019,21(4):32.
[20] Boutagy NE,Singh AK,Sessa WC. Targeting the vasculature in cardiometabolic disease[J]. J Clin Invest,2022,132(6):e148556.
[21] Rush CJ,Berry C,Oldroyd KG,et al. Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction[J]. JAMA Cardiol,2021,6(10):1130-1143.
[22] Paulus WJ,Tsch?pe C. A novel paradigm for heart failure with preserved ejection fraction:comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol,2013,62(4):263-271.
[23] Kobara M,Naseratun N,Toba H,et al. Preconditioning with short-term dietary restriction attenuates cardiac oxidative stress and hypertrophy induced by chronic pressure overload[J]. Nutrients,2021,13(3):737.
[24] Kitzman DW,Brubaker P,Morgan T,et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction:a randomized clinical trial[J]. JAMA,2016,315(1):36-46.
[25] Fukuta H,Goto T,Wakami K,et al. Effects of exercise training on cardiac function,exercise capacity,and quality of life in heart failure with preserved ejection fraction:a meta-analysis of randomized controlled trials[J]. Heart Fail Rev,2019,24(4):535-547.
[26] El Hajj EC,El Hajj MC,Sykes B,et al. Pragmatic weight management program for patients with obesity and heart failure with preserved ejection fraction[J]. J Am Heart Assoc,2021,10(21):e022930.
[27] Sarmiento-Cobos M,Rivera C,Okida LF,et al. Left ventricular mass index and ventricular contractility improvement in patients with severe obesity following rapid weight loss after bariatric surgery[J]. Surg Obes Relat Dis,2021,17(6):1140-1145.
[28] Prausmüller S,Heitzinger G,Pavo N,et al. Malnutrition outweighs the effect of the obesity paradox[J]. J Cachexia Sarcopenia Muscle,2022,13(3):1477-1486.
[29] Li S,Zheng Y,Huang Y,et al. Association of body mass index and prognosis in patients with HFpEF:a dose-response meta-analysis[J]. Int J Cardiol,2022,361:40-46.
[30] Moyes AJ,Hobbs AJ. C-type natriuretic peptide:a multifaceted paracrine regulator in the heart and vasculature[J]. Int J Mol Sci,2019,20(9):2281.
[31] Croteau D,Qin F,Chambers JM,et al. Differential effects of sacubitril/valsartan on diastolic function in mice with obesity-related metabolic heart disease[J]. JACC Basic Transl Sci,2020,5(9):916-927.
[32] Solomon SD,Mcmurray JJV,Anand IS,et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction[J]. N Engl J Med,2019,381(17):1609-1620.
[33] Packer M,Lam CSP,Lund LH,et al. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction:a hypothesis to explain influence of sex on the evolution and potential treatment of the disease[J]. Eur J Heart Fail,2020,22(9):1551-1567.
[34] Cohen JB,Schrauben SJ,Zhao L,et al. Clinical phenogroups in heartfailure with preserved ejection fraction:detailed phenotypes,pognosis,and response tospironolactone[J]. JACC Heart Fail,2020,8(3):172-184.
[35] Elkholey K,Papadimitriou L,Butler J,et al. Effect of obesity on response to spironolactone in patients with heart failure with preserved ejection fraction[J]. Am J Cardiol,2021,146:36-47.
[36] Masson W,Lavalle-Cobo A,Nogueira JP. Effect of SGLT2-inhibitors on epicardial adipose tissue:a meta-analysis[J]. Cells,2021,10(8):2150.
[37] Sato T,Aizawa Y,Yuasa S,et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume and P-wave indices:an ad-hoc analysis of the previous randomized clinical trial[J]. J Atheroscler Thromb,2020,27(12):1348-1358.
[38] Anker SD,Butler J,Filippatos G,et al. Empagliflozin in heart failure with a preserved ejection fraction[J]. N Engl J Med,2021,385(16):1451-1461.
[39] Ziyrek M,Kahraman S,Ozdemir E,et al. Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients[J]. Rev Port Cardiol(Engl Ed),2019,38(6):419-423.
[40] Packer M. Have dipeptidyl peptidase-4 inhibitors ameliorated the vascular complications of type 2 diabetes in large-scale trials? The potential confounding effect of stem-cell chemokines[J]. Cardiovasc Diabetol,2018,17(1):9.
[41] Parisi V,Petraglia L,D’Esposito V,et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue[J]. Int J Cardiol,2019,274:326-330.
[42] Raggi P,Gadiyaram V,Zhang C,et al. Statins reduce epicardial adipose tissue attenuation independent of lipid lowering:a potential pleiotropic effect[J]. J Am Heart Assoc,2019,8(12):e013104.
[43] Packer M. Are the effects of drugs to prevent and to treat heart failure always concordant? The statin paradox and its implications for understanding the actions of antidiabetic medications[J]. Eur J Heart Fail,2018,20(7):1100-1105.
[44] Everett BM,Cornel JH,Lainscak M,et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure[J]. Circulation,2019,139(10):1289-1299.
相似文献/References:
[1]王宏宇.肥胖相关的代谢综合征及其心脏和血管损伤[J].心血管病学进展,2016,(4):331.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.001]
WANG Hongyu.Obesity-Related Metabolic Syndrome and Its Heart and Vascular Damage[J].Advances in Cardiovascular Diseases,2016,(11):331.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.001]
[2]孙慧雪 郑美芳 李海 孙磊 顾翔.远程医疗应用于射血分数保留性心力衰竭的现状及进展[J].心血管病学进展,2020,(3):251.[doi:10.16806/j.cnki.issn.1004-3934.20.03.009]
SUN Huixue,ZHENG Meifang,LI Hai,et al.Status Progress of Telemedicine in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2020,(11):251.[doi:10.16806/j.cnki.issn.1004-3934.20.03.009]
[3]菲尔凯提·玉山江李昊穆叶赛·尼加提.射血分数保留性心力衰竭合并糖尿病的研究进展[J].心血管病学进展,2020,(4):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
FEIERKAITI·Yushanjiang,LIHao,MUYESAI.Nijiati.Heart Failure With Preserved Ejection Fraction and Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(11):373.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.011]
[4]高可 杨蕾 姚新叶 郑小璞.射血分数保留性心力衰竭动物模型的研究进展[J].心血管病学进展,2020,(8):834.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.013]
GAO Ke,YANG Lei,YAO Xinye,et al.Advances in Animal Models ofHeart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2020,(11):834.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.013]
[5]樊德慧 金娟 韩宇博 田苗 刘莉.利钠肽与代谢综合征的研究进展[J].心血管病学进展,2020,(10):1074.[doi:10.16806/j.cnki.issn.1004-3934.20.10.018]
FAN Dehui,JIN Juan,HAN Yubo,et al.Research Progress of Natriuretic Peptide and Metabolic Syndrome[J].Advances in Cardiovascular Diseases,2020,(11):1074.[doi:10.16806/j.cnki.issn.1004-3934.20.10.018]
[6]刘春秋 熊双 刘剑刚 董国菊.射血分数保留性心力衰竭的诊断的研究进展[J].心血管病学进展,2021,(9):784.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
LIU Chunqiu,XIONG Shuang,LIU Jiangang,et al.Diagnosis of Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2021,(11):784.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[7]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(11):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
[8]赵菲 刘永铭.抗炎类药物对射血分数保留性心力衰竭患者心外膜脂肪组织的影响[J].心血管病学进展,2022,(1):41.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.011]
ZHAO Fei,LIU Yongming.Effects of Anti-Inflammatory Drugs on Epicardial Adipose Tissue in Patients with Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(11):41.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.011]
[9]张文珺 牛小伟 刘永铭.m6A甲基化在射血分数保留性心力衰竭中的作用的研究进展[J].心血管病学进展,2022,(1):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
ZHANG Wenjun,NIU Xiaowei,LIU Yongming.m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction[J].Advances in Cardiovascular Diseases,2022,(11):44.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.012]
[10]聂琼 吴镜.射血分数保留性心力衰竭:从机制到治疗[J].心血管病学进展,2022,(3):258.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2022.03.0170]
NIE Qiong,WU Jing.Heart Failure with Preserved Ejection Fraction:from Mechanism to Treatment[J].Advances in Cardiovascular Diseases,2022,(11):258.[doi:【DOI】10.16806/j.cnki.issn.1004-3934.2022.03.0170]