[1]杨珂欣 李星辉 肖晨朦 姚晓涛 林萌 蔡佳.间充质干细胞来源外泌体改善心肌纤维化的研究进展[J].心血管病学进展,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
 YANG Kexin LI Xinghui XIAO ChenmengYAO XiaotaoLIN MengCAI Jia.Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell[J].Advances in Cardiovascular Diseases,2022,(12):1123.[doi:10.16806/j.cnki.issn.1004-3934.20.10.015]
点击复制

间充质干细胞来源外泌体改善心肌纤维化的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年12期
页码:
1123
栏目:
综述
出版日期:
2022-12-25

文章信息/Info

Title:
Improving Myocardial Fibrosis by Exosome Derived from Mesenchymal Stem Cell
作者:
杨珂欣1 李星辉12 肖晨朦1 姚晓涛3 林萌4 蔡佳4
(1.兰州大学,甘肃 兰州 730000;2.甘肃省人民医院心内一科,甘肃 兰州 730000;3.甘肃省中医药大学,甘肃 兰州 730000;4.宁夏医科大学,宁夏 银川750000)
Author(s):
YANG Kexin 1LI Xinghui 12 XIAO Chenmeng1YAO Xiaotao3LIN Meng4CAI Jia4
(1. Lanzhou UniversityLanzhou 730000,Gansu,China; 2. Department of CardiologyGansu Provincial Hospital,Lanzhou 730000,Gansu,China; 3. Gansu University of Chinese Medicine,Lanzhou 730000,Gansu,China; 4. Ningxia Medical University,Yinchuan 750000,Ningxia,China)
关键词:
心肌纤维化间充质干细胞外泌体miRNA
Keywords:
Myocardial fibrosisMesenchymal stem cellExosomemiRNA
DOI:
10.16806/j.cnki.issn.1004-3934.20.10.015
摘要:
心血管疾病具有全球发病率和病死率。心肌纤维化影响心血管疾病患者临床预后。间充质干细胞通过旁分泌作用减轻心肌纤维化。间充质干细胞来源外泌体能克服干细胞疗法免疫排斥和致瘤性等缺陷,通过内部的miRNA传递信息并调控靶细胞,参调节心肌纤维化的病理形成过程,有望指导疾病的诊断、治疗预后。对间充质干细胞来源外泌体其携带的miRNA在心肌纤维化过程中的最新研究进展进行综述,揭示其在心血管疾病中的潜在作用。
Abstract:
Mesenchymal stem cell-derived exosome can overcome the defects of stem cell therapy such as immune rejection and tumorigenicity,and regulate the pathogenesis of myocardial fibrosis by transmitting information and regulating target cells through internal miRNA,which is expected to guide the diagnosis,treatment and prognosis of the disease. In this paper,we have reviewed mesenchymal stem cell-derived exosome and the miRNA it carry in the process of myocardial fibrosis to reveal their potential roles in cardiovascular disease

参考文献/References:


[1] Luo W,Gong Y,Qiu F,et al. NGF nanoparticles enhance the potency of transplanted human umbilical cord mesenchymal stem cells for myocardial repair[J]. Am J Physiol Heart Circ Physiol,2020,320(5):H1959-H1974.
[2] 韦余胡科温钞麟等. 骨髓间充质干细胞干预心肌纤维化的增效措施[J]. 心血管病学进展,2019:774-777.
[3] Alzhrani GN,Alanazi ST,Alsharif SY,et al. Exosomes:Isolation,characterization,and biomedical applications[J]. Cell Biology International,2021,45(9):1807-1831.
[4] Shao L,Zhang Y,Lan B,et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int,2017,17(1):4150705.
[5] Zhang Z,Yang J,Yan W,et al. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair[J]. J Am Heart Assoc,2016,5(1):e002856.
[6] Yu B,Kim HW,Gong M,et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J]. Int J Cardiol,2015,182(1):349-360.
[7] Teng X,Chen L,Chen W,et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation[J]. Cell Physiol Biochem,2015,37(6):2415-2424.
[8] Xiao C,Wang K,Xu Y,et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b[J]. Circ Res,2018,123(5):564-578.
[9] Hu J,Chen X,Li P,et al. Exosomes derived from human amniotic fluid mesenchymal stem cells alleviate cardiac fibrosis via enhancing angiogenesis in vivo and in vitro[J]. Cardiovasc Diagn Ther,2021,11(2):348-361.
[10] Wang X,Bai L,Liu X,et al. Cardiac microvascular functions improved by MSC-derived exosomes attenuate cardiac fibrosis after ischemia-reperfusion via PDGFR-β modulation[J]. Int J Cardiol,2021,344(1):13-24.
[11] Ke X,Yang D,Liang J,et al. Human endothelial progenitor cell-derived exosomes increase proliferation and angiogenesis in cardiac fibroblasts by promoting the mesenchymal-endothelial transition and reducing high mobility group box 1 protein B1 expression[J]. DNA Cell Biol,2017,36(11):1018-1028.
[12] Deng S,Ge Z,Song Y,et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J]. Int J Biochem Cell Biol,2019,114(1):105564.
[13] Li Y,Shao L,Zhang Y,et al. Cell-free Mesenchymal stem cell-exosome attenuates high glucose-induced myofibroblast transformation:a novel therapeutic approach for treating cardiac fibrosis[J]. Circulation,2017,136(suppl_1):A19193-A19193.
[14] Kore R,Wang X,Ding Z,et al. Cardiac fibrosis following myocardial ischemia is mitigated by mesenchymal stem cell exosomes[J]. FASEB,2021,35(suppl_1):1-15.
[15] Wen M,Gong Z,Huang C,et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24[J]. Cell Death Dis,2018,9(3):320.
[16] Zhang C,Zhou G,Chen Y,et al. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF-α and TGF-β1/ERK1/2 signaling pathways[J]. Mol Med Rep,2018,17(1):71-78.
[17] Feng Y,Huang W,Wani M,et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22[J]. PloS One,2014,9(2):e88685.
[18] Lin F,Zeng Z,Song Y,et al. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT[J]. Stem Cell Res Ther,2019,10(1):263.
[19] Li Q,Jin Y,Ye X,et al. Bone Marrow Mesenchymal stem cell-derived exosomal microRNA-133a restrains myocardial fibrosis and epithelial-mesenchymal transition in viral myocarditis rats through suppressing MAML1[J]. Nanoscale Res Lett,2021,16(1):111.
[20] Wang S,Li L,Liu T,et al. miR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction[J]. Regen Med,2020,15(6):1749-1759.
[21] Vaskova E,Ikeda G,Tada Y,et al. Sacubitril/valsartan improves cardiac function and decreases myocardial fibrosis via downregulation of exosomal miR‐181a in a rodent chronic myocardial infarction model[J]. J Am Heart Assoc,2020,9(13):e015640.
[22] Ferguson SW,Wang J,Lee CJ,et al. The microRNA regulatory landscape of MSC-derived exosomes:a systems view[J]. Sci Rep,2018,8(1):1-12.
[23] Davies RT,Kim J,Jang SC,et al. Microfluidic filtration system to isolate extracellular vesicles from blood[J]. Lab Chip,2012,12(24):5202-5210.
[24] He JG,Li HR,Han JX,et al. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes[J]. Sci Rep,2018,8(1):9047.

相似文献/References:

[1]韦余 胡科 温钞麟 邓玮.骨髓间充质干细胞干预心肌纤维化的增效措施[J].心血管病学进展,2019,(5):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
 Wei YuHu KeWen Chao LinDeng Wei.Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(12):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
[2]孙敬辉 于永慧 王承龙.心肌纤维化研究的新领域——长链非编码RNA[J].心血管病学进展,2019,(9):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
 SUN JinghuiYU YonghuiWANG Chenglong.Long No-Coding RNAA New Field of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(12):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
[3]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(12):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[4]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
 LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(12):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[5]冯小梅 李彦红.Ⅰ型前胶原羧基端肽和Ⅲ型前胶原氨基端肽在心肌纤维化的研究进展[J].心血管病学进展,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
 FENG Xiaomei,LI Yanhong.PCP and PNP in Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2020,(12):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
[6]陈小玲 陈玉成.肺高压心肌纤维化磁共振评价及临床意义[J].心血管病学进展,2021,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
 CHEN Xiaoling,CHEN Yucheng.Cardiac Magnetic Resonance Evaluation and the Clinical Value of Myocardial Fibrosis in Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(12):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
[7]倪金荣 雷军强.心肌纤维化的无创影像诊断进展[J].心血管病学进展,2021,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
 NI Jinrong,LEI Junqiang.Noninvasive Imaging Diagnosis of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2021,(12):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
[8]俞佳丽 景雨 张剑 陈楚 陆齐 顾周山 陈子微 周大胜 景宏美 潘丽华.间充质干细胞来源的外泌体在心肌梗死治疗中的研究进展[J].心血管病学进展,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
 YU JialiJING YuZHANG JianCHEN ChuLU QiGU ZhoushanCHEN ZiweiZHOU DashenJING HongmeiPAN Lihua.Exosomes Derived from Mesenchymal Stem Cells?n the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(12):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
[9]陆文烨 宋梦星 吴芬 夏敏 马占龙.磁共振靶向成像检测大鼠纤维化心肌中肌腱蛋白X表达的实验研究[J].心血管病学进展,2022,(5):463.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.019]
 LU Wenye,SONG Mengxing,WU Fen,et al.Experimental Study on Expression of Tenascin-X in Fibrotic Myocardium of Rat by Magnatic Resonance Targeted Imaging[J].Advances in Cardiovascular Diseases,2022,(12):463.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.019]
[10]李依朔 刘宁 杨明 王智慧.心肌纤维化在高血压心脏病中的研究进展[J].心血管病学进展,2023,(7):627.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.012]
 LI Yishuo,LIU Ning,YANG Ming,et al.Cardiac F ibrosis in Hypertensi ve Heart Disease[J].Advances in Cardiovascular Diseases,2023,(12):627.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.012]

更新日期/Last Update: 2023-02-03