参考文献/References:
[1] Luo W,Gong Y,Qiu F,et al. NGF nanoparticles enhance the potency of transplanted human umbilical cord mesenchymal stem cells for myocardial repair[J]. Am J Physiol Heart Circ Physiol,2020,320(5):H1959-H1974.
[2] 韦余胡科温钞麟等. 骨髓间充质干细胞干预心肌纤维化的增效措施[J]. 心血管病学进展,2019:774-777.
[3] Alzhrani GN,Alanazi ST,Alsharif SY,et al. Exosomes:Isolation,characterization,and biomedical applications[J]. Cell Biology International,2021,45(9):1807-1831.
[4] Shao L,Zhang Y,Lan B,et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int,2017,17(1):4150705.
[5] Zhang Z,Yang J,Yan W,et al. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair[J]. J Am Heart Assoc,2016,5(1):e002856.
[6] Yu B,Kim HW,Gong M,et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J]. Int J Cardiol,2015,182(1):349-360.
[7] Teng X,Chen L,Chen W,et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation[J]. Cell Physiol Biochem,2015,37(6):2415-2424.
[8] Xiao C,Wang K,Xu Y,et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b[J]. Circ Res,2018,123(5):564-578.
[9] Hu J,Chen X,Li P,et al. Exosomes derived from human amniotic fluid mesenchymal stem cells alleviate cardiac fibrosis via enhancing angiogenesis in vivo and in vitro[J]. Cardiovasc Diagn Ther,2021,11(2):348-361.
[10] Wang X,Bai L,Liu X,et al. Cardiac microvascular functions improved by MSC-derived exosomes attenuate cardiac fibrosis after ischemia-reperfusion via PDGFR-β modulation[J]. Int J Cardiol,2021,344(1):13-24.
[11] Ke X,Yang D,Liang J,et al. Human endothelial progenitor cell-derived exosomes increase proliferation and angiogenesis in cardiac fibroblasts by promoting the mesenchymal-endothelial transition and reducing high mobility group box 1 protein B1 expression[J]. DNA Cell Biol,2017,36(11):1018-1028.
[12] Deng S,Ge Z,Song Y,et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J]. Int J Biochem Cell Biol,2019,114(1):105564.
[13] Li Y,Shao L,Zhang Y,et al. Cell-free Mesenchymal stem cell-exosome attenuates high glucose-induced myofibroblast transformation:a novel therapeutic approach for treating cardiac fibrosis[J]. Circulation,2017,136(suppl_1):A19193-A19193.
[14] Kore R,Wang X,Ding Z,et al. Cardiac fibrosis following myocardial ischemia is mitigated by mesenchymal stem cell exosomes[J]. FASEB,2021,35(suppl_1):1-15.
[15] Wen M,Gong Z,Huang C,et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24[J]. Cell Death Dis,2018,9(3):320.
[16] Zhang C,Zhou G,Chen Y,et al. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF-α and TGF-β1/ERK1/2 signaling pathways[J]. Mol Med Rep,2018,17(1):71-78.
[17] Feng Y,Huang W,Wani M,et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22[J]. PloS One,2014,9(2):e88685.
[18] Lin F,Zeng Z,Song Y,et al. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT[J]. Stem Cell Res Ther,2019,10(1):263.
[19] Li Q,Jin Y,Ye X,et al. Bone Marrow Mesenchymal stem cell-derived exosomal microRNA-133a restrains myocardial fibrosis and epithelial-mesenchymal transition in viral myocarditis rats through suppressing MAML1[J]. Nanoscale Res Lett,2021,16(1):111.
[20] Wang S,Li L,Liu T,et al. miR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction[J]. Regen Med,2020,15(6):1749-1759.
[21] Vaskova E,Ikeda G,Tada Y,et al. Sacubitril/valsartan improves cardiac function and decreases myocardial fibrosis via downregulation of exosomal miR‐181a in a rodent chronic myocardial infarction model[J]. J Am Heart Assoc,2020,9(13):e015640.
[22] Ferguson SW,Wang J,Lee CJ,et al. The microRNA regulatory landscape of MSC-derived exosomes:a systems view[J]. Sci Rep,2018,8(1):1-12.
[23] Davies RT,Kim J,Jang SC,et al. Microfluidic filtration system to isolate extracellular vesicles from blood[J]. Lab Chip,2012,12(24):5202-5210.
[24] He JG,Li HR,Han JX,et al. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes[J]. Sci Rep,2018,8(1):9047.
相似文献/References:
[1]韦余 胡科 温钞麟 邓玮.骨髓间充质干细胞干预心肌纤维化的增效措施[J].心血管病学进展,2019,(5):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
Wei YuHu KeWen Chao LinDeng Wei.Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(12):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
[2]孙敬辉 于永慧 王承龙.心肌纤维化研究的新领域——长链非编码RNA[J].心血管病学进展,2019,(9):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
SUN JinghuiYU YonghuiWANG Chenglong.Long No-Coding RNAA New Field of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(12):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
[3]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(12):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[4]刘玉婷,贾锋鹏.骨膜蛋白与心血管疾病的研究进展[J].心血管病学进展,2020,(3):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
LIU Yuting,JIA Fengpeng.Roles of Periostin in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(12):239.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.006]
[5]冯小梅 李彦红.Ⅰ型前胶原羧基端肽和Ⅲ型前胶原氨基端肽在心肌纤维化的研究进展[J].心血管病学进展,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
FENG Xiaomei,LI Yanhong.PCP and PNP in Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2020,(12):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
[6]陈小玲 陈玉成.肺高压心肌纤维化磁共振评价及临床意义[J].心血管病学进展,2021,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
CHEN Xiaoling,CHEN Yucheng.Cardiac Magnetic Resonance Evaluation and the Clinical Value of Myocardial Fibrosis in Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(12):135.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.010]
[7]倪金荣 雷军强.心肌纤维化的无创影像诊断进展[J].心血管病学进展,2021,(11):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
NI Jinrong,LEI Junqiang.Noninvasive Imaging Diagnosis of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2021,(12):1016.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
[8]俞佳丽 景雨 张剑 陈楚 陆齐 顾周山 陈子微 周大胜 景宏美 潘丽华.间充质干细胞来源的外泌体在心肌梗死治疗中的研究进展[J].心血管病学进展,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
YU JialiJING YuZHANG JianCHEN ChuLU QiGU ZhoushanCHEN ZiweiZHOU DashenJING HongmeiPAN Lihua.Exosomes Derived from Mesenchymal Stem Cells?n the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(12):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
[9]陆文烨 宋梦星 吴芬 夏敏 马占龙.磁共振靶向成像检测大鼠纤维化心肌中肌腱蛋白X表达的实验研究[J].心血管病学进展,2022,(5):463.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.019]
LU Wenye,SONG Mengxing,WU Fen,et al.Experimental Study on Expression of Tenascin-X in Fibrotic Myocardium of Rat by Magnatic Resonance Targeted Imaging[J].Advances in Cardiovascular Diseases,2022,(12):463.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.019]
[10]李依朔 刘宁 杨明 王智慧.心肌纤维化在高血压心脏病中的研究进展[J].心血管病学进展,2023,(7):627.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.012]
LI Yishuo,LIU Ning,YANG Ming,et al.Cardiac F ibrosis in Hypertensi ve Heart Disease[J].Advances in Cardiovascular Diseases,2023,(12):627.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.012]