[1]王国昊 张荣峰.缓慢性心律失常的遗传学研究进展[J].心血管病学进展,2022,(11):978.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.004]
 WANG Guohao,ZHANG Rongfeng.Genetics of Bradyarrhythmias[J].Advances in Cardiovascular Diseases,2022,(11):978.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.004]
点击复制

缓慢性心律失常的遗传学研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年11期
页码:
978
栏目:
综述
出版日期:
2022-11-25

文章信息/Info

Title:
Genetics of Bradyarrhythmias
作者:
王国昊 张荣峰
(大连医科大学附属第一医院心内科,辽宁 大连 116000)
Author(s):
WANG Guohao ZHANG Rongfeng
(Department of Cardiology, The First Affiliated Hospital of Dalian Medical University,Dalian 116000,Liaoning,China)
关键词:
缓慢性心律失常窦性心动过缓病态窦房结综合征遗传性进展性房室传导功能障碍遗传学基因突变
Keywords:
BradyarrhythmiasSinus bradycardiaSick sinus syndromeHereditary progressive atrioventricular conduction dysfunctionGeneticsGenetic variation
DOI:
10.16806/j.cnki.issn.1004-3934.2022.11.004
摘要:
缓慢性心律失常是临床上常见的一类心律失常,其主要发生机理不明,常被认为与年龄相关的退行性变有关。随着分子生物学研究的进展,现已证实缓慢性心律失常的发生与大量调控心脏功能的基因有关。现从原发性心动过缓和继发性心动过缓两个层面详细阐述与之相关基因的最新进展,全面了解缓慢性心律失常发生的遗传学机制。
Abstract:
Bradyarrhythmias is a kind of common clinical arrhythmia whose main mechanism is unknown and are often thought to be related to age-related degeneration. With the advancement of molecular biology research,it has been confirmed that the occurrence of bradyarrhythmias is related to a large number of genes that regulate heart function. In this review,the latest progress of related genes is elaborated from the two levels of primary bradycardia and secondary bradycardia,and the genetic mechanism of the occurrence of bradyarrhythmias is fully understood

参考文献/References:

[1] Kusumoto FM,Schoenfeld MH,Barrett C,et al. 2018 ACC/AHA/HRS Guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay:executive summary:a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines,and the Heart Rhythm Society [J]. J Am Coll Cardiol,2019,74(7):932-987.

[2] Wung SF. Bradyarrhythmias:clinical presentation,diagnosis,and management[J]. Crit Care Nurs Clin North Am,2016,28(3):297-308.

[3] Baruteau AE,Probst V,Abriel H. Inherited progressive cardiac conduction disorders[J]. Curr Opin Cardiol,2015,30(1):33-39.

[4] Cheng L,Li X,Zhao L,et al. Reevaluating the mutation classification in genetic studies of bradycardia using ACMG/AMP variant classification framework[J]. Int J Genomics,2020,2020:2415850.

[5] Asatryan B,Medeiros-Domingo A. Molecular and genetic insights into progressive cardiac conduction disease[J]. Europace,2019,21(8):1145-1158.

[6] Wallace MJ,El Refaey M,Mesirca P,et al. Genetic complexity of sinoatrial node dysfunction[J]. Front Genet,2021,12:654925.

[7] van Campenhout MJH,Yaksh A,Kik C,et al. Bachmann’s bundle:a key player in the development of atrial fibrillation?[J]. Circ Arrhythm Electrophysiol,2013,6(5):1041-1046.

[8] Difrancesco D. The role of the funny current in pacemaker activity[J]. Circ Res,2010,106(3):434-446.

[9] Verkerk AO,Wilders R. Pacemaker activity of the human sinoatrial node:effects of HCN4 mutations on the hyperpolarization-activated current[J]. Europace,2014,16(3):384-395.

[10] Yang B,Huang Y,Zhang H,et al. Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome[J]. J Mol Cell Cardiol,2020,138:291-303.

[11] Yanni J,D’souza A,Wang Y,et al. Silencing miR-370-3p rescues funny current and sinus node function in heart failure[J]. Sci Rep,2020,10(1):11279.

[12] Yang Y,Liu Y,Dong X,et al. Human KCNQ1 S140G mutation is associated with atrioventricular blocks[J]. Heart Rhythm,2007,4(5):611-618.

[13] Rinné S,Ortiz-Bonnin B,Stallmeyer B,et al. POPDC2 a novel susceptibility gene for conduction disorders[J]. J Mol Cell Cardiol,2020,145:74-83.

[14] Mangoni ME,Traboulsie A,Leoni AL,et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels[J]. Circ Res,2006,98(11):1422-1430.

[15] Rezazadeh S,Duff HJ. Genetic determinants of hereditary bradyarrhythmias:a contemporary review of a diverse group of disorders[J]. Can J Cardiol,2017,33(6):758-767.

[16] Yang X,Mao X,Xu G,et al. Estradiol up-regulates L-type Ca2+ channels via membrane-bound estrogen receptor/phosphoinositide-3-kinase/Akt/cAMP response element-binding protein signaling pathway[J]. Heart Rhythm,2018,15(5):741-749.

[17] Schott JJ,Alshinawi C,Kyndt F,et al. Cardiac conduction defects associate with mutations in SCN5A[J]. Nat Genet,1999,23(1):20-21.

[18] Wang Q,Shen J,Splawski I,et al. SCN5A mutations associated with an inherited cardiac arrhythmia,long QT syndrome[J]. Cell,1995,80(5):805-811.

[19] Mcnair WP,Sinagra G,Taylor MR,et al. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism[J]. J Am Coll Cardiol,2011,57(21):2160-2168.

[20] Hong KW,Lim JE,Kim JW,et al. Identification of three novel genetic variations associated with electrocardiographic traits(QRS duration and PR interval) in East Asians[J]. Hum Mol Genet,2014,23(24):6659-6667.

[21] Gusev K,Khudiakov A,Zaytseva A,et al. Impact of the DSP-H1684R genetic variant on ion channels activity in iPSC-derived cardiomyocytes[J]. Cell Physiol Biochem,2020,54(4):696706.

[22] Saito Y,Nakamura K,Nishi N,et al. TRPM4 mutation in patients with ventricular noncompaction and cardiac conduction disease[J]. Circ Genom Precis Med,2018,11(5):e002103.

[23] Leybaert L,Lampe PD,Dhein S,et al. Connexins in cardiovascular and neurovascular health and disease:pharmacological implications[J]. Pharmacol Rev,2017,69(4):396-478.

[24] Makita N,Seki A,Sumitomo N,et al. A connexin40 mutation associated with a malignant variant of progressive familial heart block typeⅠ[J]. Circ Arrhythm Electrophysiol,2012,5(1):163-172.

[25] Qiu Y,Zheng J,Chen S,et al. Connexin mutations and hereditary diseases[J]. Int J Mol Sci,2022,23(8):4255.

[26] Koenig SN,Mohler PJ. The evolving role of ankyrin-B in cardiovascular disease[J]. Heart Rhythm,2017,14(12):1884-1889.

[27] Mohler PJ,Schott JJ,Gramolini AO,et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death[J]. Nature,2003,421(6923):634-639.

[28] Gazzerro E,Sotgia F,Bruno C,et al. Caveolinopathies:from the biology of caveolin-3 to human diseases[J]. Eur J Hum Genet,2010,18(2):137-145.

[29] Holm H,Gudbjartsson DF,Sulem P,et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome[J]. Nat Genet,2011,43(4):316-320.

[30] Wolf CM,Arad M,Ahmad F,et al. Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations[J]. Circulation,2008,117(2):144-154.

[31] Patel V,Asatryan B,Siripanthong B,et al. State of the art review on genetics and precision medicine in arrhythmogenic cardiomyopathy[J]. Int J Mol Sci,2020,21(18):6615.

[32] Varela D,Varela T,Conceicao N,et al. Functional analysis of two novel TBX5 variants present in individuals with Holt-Oram syndrome with different clinical manifestations[J]. Mol Genet Genomics,2021,296(4):809-821.

[33] Hu YF,Dawkins JF,Cho HC,et al. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block[J]. Sci Transl Med,2014,6(245):245ra94.

[34] Choudhury M,Black N,Alghamdi A,et al. TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome[J]. J Physiol,2018,596(24):6141-6155.

[35] Dubik N,Mai S. Lamin A/C:function in normal and tumor cells[J]. Cancers(Basel),2020,12(12) :3688.

[36] Pagon RA,Adam MP,Ardinger HH,et al. LMNA-related dilated cardiomyopathy—GeneReviews(?)[J]. University of Washington,Seattle:1993.

[37] Lai ZF,Chen YZ. Evidence,hypotheses and significance of MAP kinase TNNI3K interacting with its partners[J]. World J Hypertens,2012,2(2):7.

[38] Lodder EM,Scicluna BP,Milano A,et al. Dissection of a quantitative trait locus for PR interval duration identifies Tnni3k as a novel modulator of cardiac conduction[J]. PLoS Genet,2012,8(12):e1003113.

[39] Musunuru K,Hershberger RE,Day SM,et al. Genetic testing for inherited cardiovascular diseases:a scientific statement from the American Heart Association[J]. Circ Genom Precis Med,2020,13(4):e000067.

[40] Wilde AAM,Semsarian C,Marquez MF,et al. European Heart Rhythm Association(EHRA)/Heart Rhythm Society(HRS)/Asia Pacific Heart Rhythm Society(APHRS)/Latin American Heart Rhythm Society(LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases[J]. Europace,2022,24(8):1307-1367.

相似文献/References:

[1]王晓妍 崔炜.替格瑞洛治疗急性冠脉综合征时引起缓慢性心律失常的研究进展[J].心血管病学进展,2021,(7):642.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.016]
 WANG Xiaoyan,CUI Wei.Bradyarrhythmia Caused by Ticagrelor in Treatment of Acute Coronary Syndrome[J].Advances in Cardiovascular Diseases,2021,(11):642.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.016]
[2]杨毓秀 贾镭 张峻 李佳 宋卫华 窦克非 尹栋.急性心肌梗死并发缓慢性心律失常的研究进展及其心脏起搏治疗现状[J].心血管病学进展,2022,(12):1057.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.001]
 YANG Yuxiu,JIA Lei,ZHANG Jun,et al.Progress of Bradyarrhythmias in Acute Myocardial Infarction and its Cardiac Pacing Therapy Status[J].Advances in Cardiovascular Diseases,2022,(11):1057.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.001]

更新日期/Last Update: 2023-01-31