[1]霍照美 田龙海 杨龙.心肌内向整流钾电流的调控因素及相关心律失常[J].心血管病学进展,2022,(7):640-644.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 HUO Zhaomei,TIAN Longhai,YANG Long.Regulatory Factors and Related Arrhythmias of Inward Rectifier Potassium Current[J].Advances in Cardiovascular Diseases,2022,(7):640-644.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
点击复制

心肌内向整流钾电流的调控因素及相关心律失常()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年7期
页码:
640-644
栏目:
综述
出版日期:
2022-07-25

文章信息/Info

Title:
Regulatory Factors and Related Arrhythmias of Inward Rectifier Potassium Current
文章编号:
202202090
作者:
霍照美12 田龙海2 杨龙 12
(1.贵州医科大学,贵州 贵阳 550025;2.贵州省人民医院心内科,贵州 贵阳 550002)
Author(s):
HUO Zhaomei12TIAN Longhai2YANG Long12
(1.Guizhou Medical University,Guiyang 550025,Guizhou,China; 2.Department of Cardiology,Guizhou Provincial People’s Hospital,Guiyang 550002 ,Guizhou,China)
关键词:
内向整流钾电流离子通道心律失常
Keywords:
Inward rectifier potassium current Ion channelArrhythmia
DOI:
10.16806/j.cnki.issn.1004-3934.2022.07.000
摘要:
心肌内向整流钾电流(IK1)由内向整流钾电流通道(Kir通道)家族成员Kir2.1通道介导。细胞膜电位静息水平时Kir2.1通道处于开放状态,K+外流增加;而当膜去极化时,Kir2.1通道的通透性降低,K+外流减少。IK1是形成心肌细胞静息膜电位的主要成分,在多种心律失常中发挥重要的作用。现就IK1的调控及其相关心律失常做一综述。
Abstract:
Myocardial inward rectifier potassium current (IK1) is mediated by Kir2.1 channel,a member of inward rectifier potassium channel(K ir channel) family. When the cell membrane potential a t the resting level,Kir2.1 channel was open and K+ outflow increased.?However, the permeability of Kir2.1 channel decreases with cell membrane depolarization,resulting in the decrease of K+ outflow. IK1 is the main component of resting potential of cardiomyocytes,and plays an important role in arrhythmias. The purpose of this paper is to review the research progress about both the regulation and related arrhythmias of IK1

参考文献/References:

[1] S?rcan AK,?engül Ayan S. Quantitative roles of ion channel dynamics on ventricular action potential[J]. Channels(Austin),2021,15(1):465-482.

[2] Bernardi J,Aromolaran KA,Zhu H,et al. Circadian mechanisms:cardiac ion channel remodeling and arrhythmias[J]. Front Physiol,2020,11:611860.

[3] Abraham MR,Jahangir A,Alekseev AE,et al. Channelopathies of inwardly rectifying potassium channels[J]. FASEB J,1999,13(14):1901-1910.

[4] Zaritsky JJ,Eckman DM,Wellman GC,et al. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation[J]. Circ Res,2000,87(2):160-166.

[5] Anumonwo JM,Lopatin AN. Cardiac strong inward rectifier potassium channels[J]. J Mol Cell Cardiol,2010,48(1):45-54.

[6] le Tanno P,Folacci M,Revilloud J,et al. Characterization of loss-of-function KCNJ2 mutations in atypical Andersen Tawil syndrome[J]. Front Genet,2021,12:773177.

[7] Reilly L,Eckhardt LL. Cardiac potassium inward rectifier Kir2:review of structure,regulation,pharmacology,and arrhythmogenesis[J]. Heart Rhythm,2021,18(8):1423-1434.

[8] Du C,Rasmusson RL,Bett GC,et al. Investigation of the effects of the short QT syndrome D172N Kir2.1 mutation on ventricular action potential profile using dynamic c lamp[J]. Front Pharmacol,2021,12:794620.

[9] Ketchum KA,Joiner WJ,Sellers AJ,et al. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem[J]. Nature,1995,376(6542):690-695.

[10] Clarke OB,Caputo AT,Hill AP,et al. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels[J]. Cell,2010,141(6):1018-1029.

[11] Whorton MR,MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins,PIP2,and sodium[J]. Cell,2011,147(1):199-208.

[12] Black KA,He S,Jin R,et al. A constricted opening in Kir channels does not impede potassium conduction[J]. Nat Commun,2020,11(1):3024.

[13] Fagnen C,Bannwarth L,Oubella I,et al. New structural insights into Kir channel gating from molecular simulations,HDX-MS and functional studies[J]. Sci Rep,2020,10(1):8392.

[14] Lopatin AN,Makhina EN,Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification[J]. Nature,1994,372(6504):366-369.

[15] Caballero R,Dolz-Gaitón P,Gómez R,et al. Flecainide increases Kir2.1 currents by interacting with cysteine 311,decreasing the polyamine-induced rectification[J]. Proc Natl Acad Sci U S A,2010,107(35):15631-15636.

[16] Huang CW,Kuo CC. A synergistic blocking effect of Mg2?and spermine on the inward rectifier K?(Kir2.1) channel pore[J]. Sci Rep,2016,6:21493.

[17] Nichols CG,Lee SJ. Polyamines and potassium channels:a 25-year romance[J]. J Biol Chem,2018,293(48):18779-18788.

[18] Hasegawa K,Ohno S,Ashihara T,et al. A novel KCNQ1 missense mutation identified in a patient with juvenile-onset atrial fibrillation causes constitutively open IKs channels[J]. Heart Rhythm,2014,11(1):67-75.

[19] Hattori T,Makiyama T,Akao M,et al. A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents[J]. Cardiovasc Res,2012,93(4):666-673.

[20] Chang HK,Lee JR,Liu TA,et al. The extracellular K+ concentration dependence of outward currents through Kir2.1 channels is regulated by extracellular Na + and Ca 2+[J]. J Biol Chem,2010,285(30):23115-23125.

[21] Li J,Li Y,Liu Y,et al. Fibroblast growth factor 21 ameliorates NaV1.5 and Kir2.1 channel dysregulation in human AC16 cardiomyocytes[J]. Front Pharmacol,2021,12:715466.

[22] Pérez-Hernández M,Matamoros M,Alfayate S,et al. Brugada syndrome trafficking-defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels[J]. JCI Insight,2018,3(18):e96291.

[23] Matamoros M,Pérez-Hernández M,Guerrero-Serna G,et al. Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1,Kir2.2 and Nav1.5 channels[J]. Cardiovasc Res,2016,110(2):279-290.

[24] Hegyi B,Bossuyt J,Ginsburg KS,et al. Altered repolarization reserve in failing rabbit ventricular myocytes:calcium and β-adrenergic effects on delayed- and inward-rectifier potassium currents[J]. Circ Arrhythm Electrophysiol,2018,11(2):e005852.

[25] Wagner S,Hacker E,Grandi E,et al. Ca/calmodulin kinaseⅡ differentially modulates potassium currents[J]. Circ Arrhythm Electrophysiol,2009,2(3):285-294.

[26] Nagy N,Acsai K,Kormos A,et al. [Ca2+] i-induced augmentation of the inward rectifier potassium current(IK1) in canine and human ventricular myocardium[J]. Pflugers Arch,2013,465(11):1621-1635.

[27] Ma K,Ma G,Guo Z,et al. Regulatory mechanism of calcium/calmodulin-dependent protein kinaseⅡ in the occurrence and development of ventricular arrhythmia(Review)[J]. Exp Ther Med,2021,21(6):656.

[28] Trum M,Islam M,Lebek S,et al. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart[J]. Am J Physiol Heart Circ Physiol,2020,319(6):H1347-H1357.

[29] Koumi S,Wasserstrom JA,Ten Eick RE. Beta-adrenergic and cholinergic modulation of inward rectifier K+ channel function and phosphorylation in guinea-pig ventricle[J]. J Physiol,1995,486( Pt 3):661-678.

[30] Reilly L,Alvarado FJ,Lang D,et al. Genetic loss of IK1 c auses adrenergic-induced phase 3 early afterdepolarizations and polymorphic and bidirectional ventricular tachycardia[J]. Circ Arrhythm Electrophysiol,2020,13(9):e008638.

[31] Domenighetti AA,Boixel C,Cefai D,et al. Chronic angiotensinⅡ stimulation in the heart produces an acquired long QT syndrome associated with IK1 potassium current downregulation[J]. J Mol Cell Cardiol,2007,42(1):63-70.

[32] Sonoyama K,Ninomiya H,Igawa O,et al. Inhibition of inward rectifier K+ currents by angiotensinⅡin rat atrial myocytes:lack of effects in cells from spontaneously hypertensive rats[J]. Hypertens Res,2006,29(11):923-934.

[33] Alvin ZV,Laurence GG,Coleman BR,et al. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and AngiotensinⅡvia the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes[J]. Med Sci Monit,2011,17(7):BR165-BR1172.

[34] Winterstein LM,Kukovetz K,Hansen UP,et al. Distinct lipid bilayer compositions have general and protein-specific effects on K+ channel function[J]. J Gen Physiol,2021,153(2) :e202012731.

[35] Ha J,Xu Y,Kawano T,et al. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate(PIP2)[J]. J Biol Chem,2018,293(10):3546-3561.

[36] Lopes CM,Zhang H,Rohacs T,et al. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies[J]. Neuron,2002,34(6):933-944.

[37] Ferrer T,Ponce-Balbuena D,López-Izquierdo A,et al. Carvedilol inhibits Kir2.3 channels by interference with PIP?-channel interaction[J]. Eur J Pharmacol,2011,668(1-2):72-77.

[38] Jin R,He S,Black KA,et al. Ion currents through Kir potassium channels are gated by anionic lipids[J]. Nat Commun,2022,13(1):490.

[39] Koepple C,Scherer D,Seyler C,et al. Dual mechanism for inhibition of inwardly rectifying Kir2.x channels by quinidine involving direct pore block and PIP2-interference[J]. J Pharmacol Exp Ther,2017,361(2):209-218.

[40] Dridi H,Kushnir A,Zalk R,et al. Intracellular calcium leak in heart failure and atrial fibrillation:a unifying mechanism and therapeutic target[J]. Nat Rev Cardiol,2020,17(11):732-747.

[41] Myles RC,Wang L,Bers DM,et al. Decreased inward rectifying K+ current and increased ryanodine receptor sensitivity synergistically contribute to sustained focal arrhythmia in the intact rabbit heart[J]. J Physiol,2015,593(6):1479-1493.

[42] 胥亚楠,杨龙,杨天和,等. 牵张刺激对乳大鼠心房肌细胞瞬时外向钾电流和内向整流钾电流的影响[J]. 中国病理生理杂志,2014,30(8):1489-1492.

[43] Chang C,Wang SH,Xu LN,et al. Glycogen synthase kinase 3 beta inhibitor SB216763 improves Kir2.1 expression after myocardial infarction in rats[J]. J Interv Card Electrophysiol, 2022,63(2):239-248.

[44] Ramalho N,?vecová O,Kula R,et al. Aminophylline at clinically relevant concentrations affects inward rectifier potassium current in a dual way[J]. Pflugers Arch,2022,474(3):303-313.

[45] Bebarova M,Matejovic P,Pasek M,et al. Dual effect of ethanol on inward rectifier potassium current IK1 in rat ventricular myocytes[J]. J Physiol Pharmacol,2014,65(4):497-509.

[46] Bébarová M,Matejovi? P,Pásek M,et al. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine[J]. Naunyn Schmiedebergs Arch Pharmacol,2016,389(10):1049-1058.

[47] Zhai XW,Zhang L,Guo YF,et al. The IK1/Kir2.1 channel agonist zacopride prevents and cures acute ischemic arrhythmias in the rat[J]. PLoS One,2017,12(5):e0177600.

[48] Liu Q,Sun J,Zhang L,et al. The agonist of inward rectifier potassium channel(IK1) attenuates rat reperfusion arrhythmias linked to CaMKⅡ signaling[J]. Int Heart J,2021,62(6):1348-1357.

[49] Anderson A,Vo BN,de Velasco E,et al. Characterization of VU0468554,a new selective inhibitor of cardiac G protein-gated inwardly rectifying K+ channels[J]. Mol Pharmacol,2021,100(6):540-547.

[50] Xia M,Jin Q,Bendahhou S,et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation[J]. Biochem Biophys Res Commun,2005,332(4):1012-1019.

[51] 薛玉梅,吴书林,邓春玉,等. 心房颤动患者内向整流性钾电流及Kir2.1 mRNA表达水平的研究[J]. 中国病理生理杂志,2005,21(4):707-710.

[52] Whittaker DG,Ni H,El Harchi A,et al. Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome:insights from virtual human atria[J]. PLoS Comput Biol,2017,13(6):e1005593.

[53] Fenner MF,Carstensen H,Dalgas Nissen S,et al. Effect of selective IK,ACh inhibition by XAF-1407 in an equine model of tachypacing-induced persistent atrial fibrillation[J]. Br J Pharmacol,2020,177(16):3778-3794.

[54] 扶泽南,杨龙,夏桂玲,等. 钙调神经磷酸酶Aβ基因沉默的乳鼠肥大心室肌细胞内向整流钾电流和动作电位的变化[J]. 山东医药,2018,58(43):31-34.

[55] Sato A,Takano T,Chinushi M,et al. Usefulness of the intravenous flecainide challenge test before oral flecainide treatment in a patient with Andersen-Tawil syndrome[J]. BMJ Case Rep,2020,177(16):3778-3794.

[56] Sachdeva S,Gupta SK,Naik N. Every face tells a story-unravelling a case of bidirectional ventricular tachycardia[J]. Indian Pacing Electrophysiol J,2020,20(5):199-202.

[57] Piao L,Li J,McLerie M,et al. Transgenic upregulation of IK1 in the mouse heart is proarrhythmic[J]. Basic Res Cardiol,2007,102(5):416-428.

相似文献/References:

[1]付韫韬 赵庆彦?/html>.巨噬细胞调控离子通道致心律失常研究的最新进展[J].心血管病学进展,2022,(2):100.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.002]
 FU Yuntao ZHAO Qingyan.Macrophages Regulating Ion Channels to Induce Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(7):100.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.002]
[2]王森 钱进 姜苏蓉.SGLT2抑制剂对心脏离子通道作用的研究进展[J].心血管病学进展,2024,(11):1013.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.012]
 WANG Sen,QIAN Jin,JIANG Surong.Effects of SGLT2 Inhibitors on C ardiac Ion Channels[J].Advances in Cardiovascular Diseases,2024,(7):1013.[doi:10.16806/j.cnki.issn.1004-3934.2024.11.012]

更新日期/Last Update: 2022-08-22