[1]薛建强 刘玉萍 倪国华 孙颖 孙平.60岁以上人群身体测量指标对代谢综合征的预测价值[J].心血管病学进展,2022,(10):947.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.019]
 XUE Jianqiang,LIU Yuping,NI Guohua,et al.Predictive Value of Body Measurements for Metabolic Syndrome in People Over 60 Years of Age[J].Advances in Cardiovascular Diseases,2022,(10):947.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.019]
点击复制

60岁以上人群身体测量指标对代谢综合征的预测价值()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年10期
页码:
947
栏目:
论著
出版日期:
2022-10-25

文章信息/Info

Title:
Predictive Value of Body Measurements for Metabolic Syndrome in People Over 60 Years of Age
作者:
薛建强1 刘玉萍1 倪国华1 孙颖2 孙平 1
(1.电子科技大学附属医院 四川省人民医院健康管理中心,四川 成都 610072;2.四川省人民医院老年心血管内科,四川 成都 610072)
Author(s):
XUE Jianqiang1LIU Yuping1NI Guohua1SUN Ying2SUN Ping1
1.Health Management Center, Sichuan Provincial People ’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072,Sichuan,China2.Geriatric Cardiovascular Unit, Sichuan Provincial People ’s Hospital, Chengdu 610072,Sichuan,China)
关键词:
60岁以上身体测量指标代谢综合征预测价值
Keywords:
Over 60 years old Body measurements Metabolic syndrome Predictive value
DOI:
10.16806/j.cnki.issn.1004-3934.2022.10.019
摘要:
目的 研究身体测量指标对60岁以上人群代谢综合征(MetS)的预测价值,为MetS筛查提供证据。 方法 通过回顾2018 —2020年度在四川省人民医院健康管理中心北区参加健康体检的60岁以上人群资料,分析身体测量指标对60岁以上人群MetS的预测价值。结果 共获取了10 582例有效的健康体检资料,在MetS与非MetS的两组比较中,腰围(WC)、身体形态指数(ABSI)、身体圆度指数(BRI)、身体脂肪指数(BAI)、相对脂肪质量指数(RFM)、 体重指数(BMI)水平差异有统计学意义( P<0.05)。单因素logistic回归分析显示,BMI(OR=1.438,95%CI 1.406~1.471),ABSI(OR=2.138,95%CI 1.651~2.769),BRI(OR=3.659,95%CI 3.345~4.002),BAI(OR=1.195,95%CI 1.175~1.216),RFM(OR=1.446,95%CI 1.415~1.477),WC(OR=1.189,95%CI 1.178~1.200)与MetS相关(P<0.05)。矫正性别、年龄、饮酒、收缩压、舒张压、空腹血浆葡萄糖、甘油三酯、总胆固醇、高密度脂蛋白胆固醇的多因素logstic回归分析显示,BMI(OR=1.427,95%CI 1.398~1.456),ABSI(OR=2.024,95%CI 6.583~6.224),BRI(OR=3.587,95%CI 3.311~3.886),BAI(OR=1.185,95%CI 1.167~1.203),RFM(OR=1.421,95%CI 1.395~1.448),WC(OR=1.178,95%CI 1.168~1.188),与MetS有关(P<0.05)。60岁以上人群不同性别人群WC的受试者工作特征曲线下面积最大,高于RFM、BMI、BRI、ABSI和BAI。结论 WC在预测不同性别60岁以上人群中的价值均优于RFM、BMI、BRI、ABS I和BAI。
Abstract:
Objective To investigate the predictive value of body measurements for metabolic syndrome (MetS) in people over 60 years of age and to provide evidence for MetS screening . Methods To analyze the predictive value of body measurements for metabolic syndrome in people over 60 years of age by reviewing the data of people over 60 years of age who attended health check-ups at the Health Management Center North of Sichuan Provincial People’s Hospital from 2018 to 2020. Results A total of 10582 validated health check-ups were obtained. In the comparison between the MetS and non-MetS groups,waist circumference (WC),body shape index (ABSI),body roundness index (BRI),body adiposity index (BAI),relative fat mass index (RFM),body mass index (BMI) levels were statistically significant (P<0.05).One-way logistic regression analysis showed that BMI(OR=1.438,95%CI 1.406~1.471),ABSI ( OR=2.138,95%CI 1.651~2.769),BRI(OR=3.659,95%CI 3.345~4.002),BAI(OR=1.195,95%CI 1.175~1.216),RFM(OR=1.446,95%CI 1.415~1.477),WC(OR=1.189,95%CI 1.178~1.200) were associated with MetS (P<0.05). Multifactorial logstic regression analysis corrected for sex,age,alcohol consumption,systolic blood pressure,diastolic blood pressure,fasting plasma glucose,triglycerides,total cholesterol,high-density lipoprotein cholesterol,BMI(OR=1.427,95%CI 1.398~1.456),ABSI ( OR=2.024,95%CI 6.583~6.224),BRI(OR=3.587,95%CI 3.311~3.886),BAI(OR=1.185,95%CI 1.167~1.203),RFM(OR=1.421,95%CI 1.395~1.448),and WC(OR=1.178,95%CI 1.168~1.188) were associated with MetS(P<0.05). The area under the ROC curve was greatest for WC across gender groups in the 60+ age group and was higher than RFM,BMI,BRI,ABSI and BAI. Conclusions WC has better value than RFM,BMI,BRI,ABSI,and BAI in predicting people over 60 years of age by gender

参考文献/References:

[1] Saklayen MG.The global epidemic of the metabolic syndrome[J].Curr Hypertens Rep,2018,20(2):12.

[2] Li Y,Zhao L,Yu D,et al.Metabolic syndrome prevalence and its risk factors among adults in China:A nationally representative cross-sectional study[J].PLoS One,2018,13(6):e0199293.

[3] 第七次全国人口普查主要数据公布人口总量保持平稳增长[J].西北人口,2021,42(3):127.

[4] Ranasinghe P,Mathangasinghe Y,Jayawardena R,et al.Prevalence and trends of metabolic syndrome among adults in the asia-pacific region:a systematic review[J].BMC Public Health,2017,17(1):101.

[5] G?uszek S,Ciesla E,G?uszek-Osuch M,et al.Anthropometric indices and cut-off points in the diagnosis of metabolic disorders[J].PLoS One,2020,15(6):e0235121.

[6] Tian T,Zhang J,Zhu Q,et al.Predicting value of five anthropometric measures in metabolic syndrome among Jiangsu Province,China[J].BMC Public Health,2020,20(1):1317.

[7] Seidell JC,Visscher TL.Body weight and weight change and their health implications for the elderly[J].Eur J Clin Nutr,2000,54(3):33-39.

[8] Krakauer NY,Krakauer JC.A new body shape index predicts mortality hazard independently of body mass index[J].PLoS One,2012,7(7):e39504.

[9] Thomas DM,Bredlau C,Bosy-Westphal A,et al.Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model[J].Obesity(Silver Spring),2013,21(11):2264-2271.

[10] Bergman RN,Stefanovski D,Buchanan TA,et al.A better index of body adiposity[J].Obesity (Silver Spring),2011,19(5):1083-1089.

[11] Woolcott OO,Bergman RN.Relative fat mass (RFM) as a new estimator of whole-body fat percentage ─ A cross-sectional study in American adult individuals[J].Sci Rep,2018,8(1):10980.

[12] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2017年版)[J].中国实用内科杂志,2018,38(4):292-344.

[13] Mottillo S,Filion KB,Genest J,et al.The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis[J].J Am Coll Cardiol,2010,56(14):1113-1132.

[14] Przybycien-Gaweda PM,Gwee X,Gao Q,et al.Metabolic syndrome and cognition:follow-up study of chinese over-55-year-olds[J].Dement Geriatr Cogn Disord,2020,49(2):129-137.

[15] Chao CT,Lee YH,Li CM,et al.Advanced age and chronic kidney disease modify the association between metabolic syndrome and frailty among community-dwelling elderly[J].Rejuvenation Res,2020,23(4):333-340.

[16] Buchmann N,Spira D,K?nig M,et al.Frailty and the metabolic syndrome - results of the berlin aging study Ⅱ (BASE- Ⅱ)[J].J Frailty Aging,2019,8(4):169-175.

[17] Barranco-Ruiz Y,Villa-González E,Venegas-Sanabria LC,et al.Metabolic syndrome and its associated factors in older adults:a secondary analysis of SABE Colombia in 2015[J].Metab Syndr Relat Disord,2020,18(8):389-398.

[18] Li R,Li W,Lun Z,et al.Prevalence of metabolic syndrome in Mainland China:a meta-analysis of published studies[J].BMC Public Health,2016,1(6):296.

[19] Rodríguez-Guerrero E,Romero-Salda?a M,Fernández-Carbonell A,et al.New simplified diagnostic decision trees for the detention of metabolic syndrome in the elderly[J].Int J Environ Res Public Health,2020,17(14):5191.

[20] Eyvazlou M,Hosseinpouri M,Mokarami H,et al.Prediction of metabolic syndrome based on sleep and work-related risk factors using an artificial neural network[J].BMC Endocr Disord,2020,20(1):169.

[21] Rochlani Y,Pothineni NV,Kovelamudi S,et al.Metabolic syndrome:pathophysiology,management,and modulation by natural compounds[J].Ther Adv Cardiovasc Dis,2017,11(8):215-225.

[22] Fanning J,Walkup MP,Ambrosius WT,et al.Change in health-related quality of life and social cognitive outcomes in obese,older adults in a randomized controlled weight loss trial:Does physical activity behavior matter?[J].J Behav Med,2018,41(3):299-308.

[23] Julibert A,Bibiloni MDM,Tur JA.Dietary fat intake and metabolic syndrome in adults:A systematic review[J].Nutr Metab Cardiovasc Dis,2019,29(9):887-905.

更新日期/Last Update: 2022-12-26